Ivakina E. G., Tihnenko V. G., Dzuba Y. V.

On the reasons for accidents with death outcome in power plants


Alzakkar Ahmad, Mestnikov N. P., Alhajj Hassan Fouad, Valeev I. M.

Study of support of frequency stability in electrical power systems at voltage 400 kV in Syria


Khismatullin A. S., Surakov M. R., Bashirova E. M.

Study of the influence of transformers on the quality of electric energy in the electrical supply system


Rudi D. Yu., Mochalin K. S., Vishnyagov M. G.

Experimental study of the volume asymmetry coefficient by reverse sequence in the network of the mechanical workshop of Sibgazstroydetal CJSC






Shmigel V. V., Sheshunova E. V., Uglovsky A. S.

Elimination of industrial dust from cowsheds and the effect of air ionization on the productivity and levels of growth hormone of dairy breeds of cows


Tishkov V. V., Leshinskaya T. B., Galkin M.

Analysis of economic losses from damage in distribution electric networks with agricultural consumers


Leshinskaya T. B., Belov S. I., Petrov P. S.

Refinement of reliability indicators based on the bayesian approach in designing 10 kv air lines


Kireicheva L. V., Abdeshev K. B., Mustafayev Z. S., Kozykeyeva A. T.

Resource-saving and environmentally safe method and technology of washing of saline soils


Belokovylskiy A. M.

Analysis of operational reliability of tractors


Putan A. A., Andreev O. P.

Launchers of heat disposal with defrosting system


Kvachantiradze E. P., Kovrigo O. V., Medvedev A. G.

Production and technological problems of small livestock farms


Kipriyanov F. A., Savinykh P. A.

Grouping results of the agricultural enterprises of the Vologda region by indicators of milk production


Panova A. V.

Architecture of cloud based service for routes optimization of machinery and vehicles of agricultural enterprises



















DOI: 10.34286/1995-4646-2020-71-2-7-13

УДК 331.46:621.31


EKATERINA G. IVAKINA, Ph. D. of Engineering Sciences, Associate Professor

VALERY G. TIHNENKO, Ph. D. of Engineering Sciences, Associate Professor

YURIY V. DZUBA, Ph. D. of Engineering Sciences, Associate Professor

Russian Timiryazev State Agrarian University, Russian Federation, Moscow



Abstract. Statistical data on industrial accidents, fatal accidents are presented. Over the past decade, the number of victims of industrial accidents, including fatalities, decreased by almost 2.5 times. It was established that all fatal accidents that occur at electric power enterprises are associated with touching live parts of electrical installations, electric shock, and injuries incompatible with life. An analysis of group accidents, as well as serious accidents and fatal accidents, shows that the causes of accidents can be: poor organization of work during the operation of power plants, low reliability of technical systems of power plants, non-compliance with labor protection instructions when performing work, erroneous and unauthorized actions of employees themselves, etc. Based on the circumstances and causes of group accidents, as well as serious accidents and accidents fatal recommendations are given to reduce the level of occupational injuries and to prevent accidents at electric power enterprises.

Key words: occupational injuries, injured, industrial accident, electric current, injury labor protection requirements.



1. Federal'naya sluzhba gosudarstvennoj statistiki. URL:

2. Ob analize neschastnyh sluchaev na energoustanovkah.

3. Trudovoj kodeks Rossijskoj Federaciiot 30.12.2001 № 197-FZ. URL:

4. GOST 12.0.002-2014. Mezhgosudarstvennyj standart. Sistema standartov bezopasnosti truda. Terminy i opredeleniya. URL:

5. Prikaz Mintruda Rossiiot 24.07.2013 № 328n "Ob utverzhdenii Pravil po ohrane truda pri ekspluatacii elektroustanovok". URL:





DOI: 10.34286/1995-4646-2020-71-2-14-23

УДК 338(4/9):621.311(569.1)


ALZAKKAR AHMAD, Postgraduate

NIKOLAI P. MESTNIKOV, Master’s degree


ILGIZ M. VALEEV, Advanced Doctor in Engineering Sciences

Kazan State Power Engineering University, Respublika Tatarstan, Kazan'



Abstract. The article will feature series of simulations on the Syrian network for 2011 PSS / E. The use of this program for comparing data on real factors associated with a power outage that occurred in the Syrian energy system is shown. This study demonstrates that the project EIJLLPST uses all the necessary technical and economic benefits. An applied study conducted through a series of simulations on the Syrian network during 2011 using PSS / E. The research experience focused on hot standby, electrical connections and voltage distribution in the network. avoid falling into undesirable frequency values. After this correction the graph will have a low frequency, in the power supply network and reducing the values of the consumed load on the tea, in order to avoid power outages in the event of interference.

Key words: hot standby, electrical connection, collapse frequency, stability.

Acknowledgments: I thank the management of Kazan State Energy University for their support in carrying out this work. Thank you prof. Valeev I. M. and Assoc. prof. Maksimov V. V. for their sincere support in order to successfully complete this article.



1. Koordinacionnoe upravlenie v Ministerstve energetiki SAR - nekotorye dannye o sirijskoj seti. 2017.

2. Arab Union of Electrical Engineers AUEE. URL:

3. Vos'maya arabskaya energeticheskaya konferenciya. 2016. 61 p.

4. Prabha Kundur. Power System Stability And Control. McGraw-Hill, 1993. 1196 p.

5. Gillian R. Lalor. Frequency Control on an Island Power System with Evolving Plant Mix / University College Dublin // Journal of Automation and Control. 2015. Vol. 3, No. 2. рр. 43-47. DOI: 10.12691/ automation-3-2-2. URL:

6. Jan Machowski, Janusz Bialek, James Bumby. Power System Dynamics: Stability and Control Second Edition. John Wiley & Sons, Ltd. 2008. 660 р.

7. Jianhua Chen, Wenchuan Wu. A spinning reserve allocation method for power generation dispatch accommodating large-scale wind power integration // Energies. 2013. 6(10). рр. 5357-5381. URL:

8. Kazakul A. A. Promyshlennye programmno-vychislitel'nye kompleksy v elektroenergetike. Blagoveshchensk: Izdatel'stvo AmGU, 2013. 88 p.

9. Middle East and North Africa Integration of Electricity Networks in the Arab World: Regional Market Structure and Design. Report No: ACS7124-2013. URL:

10. Godovoj statisticheskij otchet Sirijskoj elektricheskoj seti. 2016.

11. Le Roux P. F., Bansal R. C. Transient stability control by means of under-frequency load shedding and a hybrid control scheme // Journal of Energy in Southern Africa. 2017. Vol. 28. рp. 41-53.

12. Natural Gas Pipelines: Problems from Beginning to End. URL:

13. James R. J., Kirkland W. D. Computer algorithm for selection of frequency relays for load shedding. 1988. p. 21.

14. Bashar Sabeeh, Chin Kim Gan. Power system frequency stability and control: Survey. 2016. pp. 179-187. URL:

15. John Undrill. Primary Frequency Response and Control of Power System Frequency // Energy Analysis and Environmental Impacts Division. Lawrence Berkeley National Laboratory. 2018. pp. 66.





DOI: 10.34286/1995-4646-2020-71-2-24-30

УДК (621.314.21:621.31).004.12


AZAT S. KHISMATULLIN, Ph. D. of Physico-Mathematical Sciences, Associate Professor


ELMIRA M. BASHIROVA, Ph. D. of Engineering Sciences, Associate Professor

Branch of Ufa State Oil Technical University, Russian Federation, Salavat



Abstract. Currently, enterprises are increasingly raising the issue of the quality of electric energy, in particular the impact of various electrical equipment on the state of the electric network. One of the possible ways to reduce the risk of lowering the quality of electric energy is to analyze and take into account the effects of various sources of higher harmonics. The aim of the study is to determine the relationship of various operating modes and the technical condition of transformers with parameters of indicators of the quality of electric energy. The analysis of the effect of transformers on the power supply network in normal operation, as well as the effect of transformers with various deviations in the power supply network, on the parameters of the quality indicators of electric energy in the power supply system is carried out. A software model of the power supply system has been developed. In the course of software modeling, three modes of operation in the power supply system were considered: the study of the effect of starting a powerful load through a transformer, the generation of higher harmonics by the transformer in the electric network, the effect of the transformer on the quality indicators of electricity in the power supply system at various levels of harmonics. Timely identification of defects in power transformers that can lead to equipment failure, as well as an assessment of the effect of the transformer on higher harmonics in power supply networks, will not only develop methods to improve the quality index of electric energy, but also significantly reduce the number of accidents that can cause major damage to electric networks.

Key words: harmonics, power supply, technical condition, defects, transformer, accidents, electric networks.



1. Bashirov M. G., Hismatullin A. S., Prahov I. V. Povyshenie nadezhnosti i bezopasnosti ekspluatacii silovyh maslonapolnennyh transformatorov [Improving the reliability and safety of operation of power oil-filled transformers] // Bezopasnost' v tekhnosfere. 2018. T. 7. № 2. pp. 15-21.

2. Bashirov M. G., Prahov I. V., Hismatullin A. S., Husnutdinova I. G. Sovershenstvovanie metodov ocenki tekhnicheskogo sostoyaniya silovyh transformatorov [Improving methods for assessing the technical condition of power transformers] // Promyshlennaya energetika. 2018. № 7. pp. 2-10.

3. Kamalov A. R., Hismatullin A. G., Hajrullina D. D., Hismatullin A. S. Povyshenie effektivnosti ohlazhdeniya silovyh maslyanyh transformatorov pri pomoshchi elegaza [Improving the cooling efficiency of power oil transformers using SF6 ] // Transport i hranenie nefteproduktov i uglevodorodnogo syr'ya. 2017. № 1. pp. 54-56.

4. Krivokoneva O. O., Kudoyarov R. I., Mavlekaev E. Yu., Konys E. M., Prahov I. V., Hismatullin A. S. Prodlenie resursa maslyanyh transformatorov s dlitel'nym srokom ekspluatacii [Extended life of oil transformers with a long service life] // Vestnik YUzhno-Ural'skogo gosudarstvennogo universiteta. Ser.: Energetika. 2017. T. 17. № 3. pp. 60-66.

5. Filippov A. I., Mihajlov P. N., Hismatullin A. S. Fil'tracionno-volnovoj nagrev neftyanogo plasta [Filtration-wave heating of the oil reservoir] // Inzhenernaya fizika. 2006. № 5. pp. 13-21.

6. Hismatullin A. S., Davletshin R. A., Bazarbaev R. K. Issledovanie svojstv zhidkih izolyacij so vsplyvayushchimi puzyr'kami [Investigation of the properties of liquid insulations with pop-up bubbles] // Mezhdunarodnyj tekhniko-ekonomicheskij zhurnal. 2019. № 2. pp. 93-97.

7. Hismatullin A. S., Vahitov A. H., Feoktistov A. A. Metodika tekhnicheskogo obsluzhivaniya i remonta promyshlennyh silovyh transformatorov po tekhnicheskomu sostoyaniyu [Technique for maintenance and repair of industrial power transformers in technical condition] // Fundamental'nye issledovaniya. 2016. № 2-2. pp. 308-313.

8. Mullakaev M. S. Ultrasonic intensification of the processes of enhanced oil recovery, processing of crude oil and oil sludge, purification of oil-contaminated water. M. : HELRI, 2018. 376 p.





DOI: 10.34286/1995-4646-2020-71-2-31-38

УДК 621.315:621.


DMITRY YU. RUDI, Postgraduater

KONSTANTIN S. MOCHALIN, Ph. D. of Engineering Sciences, Senior Lecturer

Siberian State University of Water Transport, Russian Federation, Novosibirsk

MIKHAIL G. VISHNYAGOV, Ph. D. of Engineering Sciences, Associate Professor

Siberian State University of Water Transport, Omsk Institute of Water Transport (branch), Russian Federation, Omsk


Abstract. The problem of the quality of electric energy in the power supply systems of industrial enterprises, in connection with the development and widespread introduction in the production of various high-performance technological installations, such as arc steel-smelting furnaces, welding plants, induction furnaces, etc. continues to be one of the most important ones that determine the reliability and efficiency of power supply to consumers. The voltage asymmetry coefficient in the reverse sequence in a general-purpose power supply system as a distortion parameter is a continuously distributed random variable that depends on many random stationary relatively long-term electromagnetic processes caused by the operating modes of electric consumers, the state of electric networks and their operating modes. A study was conducted in the power supply system of the mechanical workshop of CJSC Sibgazstroydetal in accordance with the requirements of the standard GOST 30804.4.7-2013 and in accordance with the measurement program. Processing of the measurement results was carried out using the software product “Processing of experimental data of electric energy quality indicators by the voltage asymmetry coefficient in the reverse order”, due to which the parameters of the distribution law of the studied quantity were calculated, and the probabilities of the appearance of conductive electromagnetic interference for the calculation period were determined. The analysis of the compliance of this indicator of the quality of electric energy with the requirements of GOST 32144-2013.

Key words: electric power quality, electromagnetic compatibility, voltage asymmetry in the reverse order, GOST 32144-2013, machine shop.



1. Rudi D. Yu., Kleutin V. I., Antonov A. I. Problemy kachestva elektroenergii i elektromagnitnoj sovmestimosti v elektroenergeticheskih sistemah [Problems of power quality and electromagnetic compatibility in power systems] // V sb.: Transformaciya nauchnoj mysli v XXI veke : Sbornik statej mezhdunarodnoj nauchno-prakticheskoj konferencii. 2017. pp. 692-707.

2. Antonov A. I. The voltage asymmetry in electrical networks with single-phase load / A. I. Antonov, T. V. Gonenko, V. F. Khatsevskiy [i dr.] // Dynamics of Systems, Mechanisms and Machines (Dynamics 2017). Omsk, 2017 DOI 10.1109/ Dynamics. 2017.8239461. URL:

3. GOST 32144-2013. Mezhgosudarstvennyj standart. Elektricheskaya energiya. Sovmestimost' tekhnicheskih sredstv elektromagnitnaya. Normy kachestva elektricheskoj energii v sistemah elektrosnabzheniya obshchego naznacheniya [State tandard. Elektricheskaya energiya. Sovmestimost 'tekhnicheskih sredstv elektromagnitni. Normy kachestva elektricheskoj energii v sistemah elektrosnabzheniya obshchego naznacheniya]. Vved. 2014-07-01. M. : Standartinform, 2014. 20 p.

4. Ivanova E. V. Konduktivnye kommutacionnye pomekhi v mectnyh elektricheckih cetyah promyshlennyh predpriyatij i elektroctancij [Conducted switching interference in local electrical networks of industrial enterprises and power plants] // Promyshlennaya energetika. 2003. № 7. pp. 36-40.

5. Rudi D. Yu., Antonov A. I., Ruppel' A. A., Ruppel' E. Yu. Issledovanie snizheniya koefficienta nesimmetrii napryazheniya po obratnoj posledovatel'nosti s pomoshch'yu simmetriruyushchego ustrojstva transformatornogo tipa [The study of reducing the voltage coefficient in the reverse sequence using a transformer-type balancing device] // Omskij nauchnyj vestnik. 2017. № 5 (155). pp. 103-106.

6. Antonov A. I. Algoritm opredeleniya konduktivnoj nizkochastotnoj elektromagnitnoj pomekhi po koefficientu nesimmetrii napryazheniya po obratnoj posledovatel'nosti [The algorithm for determining the conductive low-frequency electromagnetic interference by the voltage asymmetry coefficient in the reverse sequence] / A. I. Antonov [i dr.] // Nauchnye problemy transporta Sibiri i Dal'nego Vostoka. 2018. № 1. pp. 177-182.

7. Kartashev I. I. Kachestvo elektroenergii v cictemah elektrocnabzheniya. Spocoby ego kontrolya i obespecheniya [The quality of electricity in power supply systems. Ways to control and ensure it] / pod red. M. A. Kaluginoj. M. : MEI, 2000. 120 p.

8. Sokolov M. M. Sovershenstvovanie metodov kontrolya sostoyaniya elektrotekhnicheskogo kompleksa elektrosnabzheniya ustrojstv avtomatiki elektrificirovannyh zheleznyh dorog [Improving methods for monitoring the state of the electrical engineering complex of power supply for automation devices of electrified railways] : dis. kand. tekhn. nauk: 05.09.03 / Sokolov Maksim Mihajlovich. Omsk, 2010. 163 p.

9. Antonov A. I., Rudi D. Yu., Ruppel' A. A. Nesimmetriya napryazhenij po obratnoj posledovatel'nosti v elektricheskih setyah obshchego naznacheniya kak vid iskazheniya [Inverse sequence voltage asymmetry in general-purpose electrical networks as a form of distortion] // Nauchnye dostizheniya i otkrytiya sovremennoj molodezhi: sbornik statej III mezhdunarodnoj nauchno-prakticheskoj konferencii. Penza :  MCNS "Nauka i Prosveshchenie", 2018. pp. 22-27.

10. Antonov A. I. Opredelenie konduktivnoj nizkochastotnoj pomekhi po koefficientu nesimmetrii napryazheniya po obratnoj posledovatel'nosti [Determination of conductive low-frequency noise by the voltage asymmetry coefficient in the reverse sequence] / A. I. Antonov [i dr.] // Nauchnye problemy transporta Sibiri i Dal'nego Vostoka. 2015. № 4. pp. 199-203.

11. Rudi D. Yu. Metody snizheniya nesimmetrii napryazheniya v elektricheskih setyah 0,4-10 kV [Methods for reducing voltage asymmetry in electric networks 0.4-10 kV] / D. Yu. Rudi [i dr.] // Omskij nauchnyj vestnik. 2018. № 2 (158). pp. 75-77.

12. Danilov G. A., Denchik Yu. M., Ivanov M. N. Sitnikov G. V. Povyshenie kachestva funkcionirovaniya linij elektroperedachi [Improving the quality of power lines] / Pod red. V. P. Gorelova, V. G. Sal'nikova. Novosibirsk : Novosib. gos. akad. vodn. transp., 2013. 559 p.

13. Antonov A. I. Komp'yuternaya programma dlya opredeleniya konduktivnoj nizkochastotnoj elektromagnitnoj pomekhi po koefficientu nesimmetrii napryazheniya po obratnoj posledovatel'nosti [A computer program for determining low-frequency electromagnetic interference by the voltage asymmetry coefficient in the reverse sequence] / A. I. Antonov [i dr.] // Nauchnye problemy transporta Sibiri i Dal'nego Vostoka. 2018. № 2. pp. 243-249.

14. Zubanov D. A., Kleutin V. I., Sidorenko A. A. Obrabotka rezul'tatov eksperimental'nyh issledovanij pokazatelej kachestva elektricheskoj energii sredstvami programmy LabView [Processing the results of experimental studies of indicators of the quality of electric energy by means of the LabViev program] : Sbornik nauchnyh trudov Novosibirskoj gosudarstvennoj akademii vodnogo transporta. Irtyshskij filial (Omsk). Omsk, 2012. pp. 118-121.

15. Gosudarstvennaya registraciya programmy dlya EVM RU2016661752. Obrabotka eksperimental'nyh dannyh pokazatelej kachestva elektricheskoj energii po koefficientu nesimmetrii napryazhenij po obratnoj posledovatel'nosti / A. I. Antonov, Yu. M. Denchik, D. A. Zubanov [i dr.]. № 2016619225; zayavl. 30.08.16, opubl. 20.11.16. Byul. №11(121). 1 p.











DOI: 10.34286/1995-4646-2020-71-2-39-48

УДК 631.22:628.8/9:636.234.1


VLADIMIR V. SHMIGEL, Advanced Doctor in Engineering Sciences, Professor

ELENA V. SHESHUNOVA, Ph. D. of Engineering Sciences, Associate Professor

ARTEM S. UGLOVSKY, Ph. D. of Engineering Sciences, Associate Professor

Yaroslavl State Agricultural Academy, Russian Federation, Yaroslavl



Abstract. Three experiments with dairy cows were conducted in the barn of Dzerzhinsky Plemzavod OJSC in the Yaroslavl Region under controlled conditions. The aim of the study was to determine the effect of a regulated ionic microclimate on the emission of dust particles (aerosol) up to a diameter of 10 mkm (PM10). For the experiment, 18 milk cows were selected, having from 3 to 8 calving, the barn was equipped with a vacuum ventilation system. To control the ionic microclimate, an aeroionizer apparatus was used (maximum voltage 10 kV, current 25 mkA). Thus, the concentration of dust in the air in the barn (42...132 mkg / m3) was reduced by 12.7...26.2%. In experiments B and C, statistical significance P ? 0.05 was achieved. The flow of dust particles from the barn decreased from 7.41...8.63 mg / h to 5.30...6.55 mg / h per animal, i. e. by 24.1...31.3%. As a result of ionization, the ratio of n + to n- ions changed. The unipolarity coefficient was changed from 1.65...1.93 to 0.82...0.89, i. e., the superiority of ions of n - .18 dairy cows was exposed to a vertical electric field of 10 kV / m. The increase in the growth of aeroions especially progressed in the moments associated with the transition to a long 3-hour sessions. It reached 370...380 g per day. Intensive weight gain was due to those nutrients that were previously stored by the body, as well as due to the intensification of metabolism in the body under the influence of ions of negative polarity.

Key words: air, livestock buildings, cows, air ions, animal productivity, aeroionization.



1. Aarnink A., Roelofs P., Ellen H., Gunnink H. Dust sources in animal houses / In Proc. Intl. Symp. Dust Control Animal Prod. Facilities, Aarhus, Denmark: Danish Institute of Agricultural Sciences. 1999. рр. 34-40.

2. Collins M., Algers B. Effects of stable dust on farm animals - а review / Vet. Res. Commun. 1986. 10(6). pp. 415-428. doi: 10.1007/BF02214005.

3. Dolejs J., Masata O., Toufar O. Elimination of dust production from stables for dairy cows / Czech Journal of Animal Science. 2006. 51(7). pp. 305-310.

4. Tanaka A., Zhang Y. Dust settling efficiency and electrostatic effect of a negative ionization system / Journal of Agricultural Safety and Health.1996. 2(1). pp. 39-47. doi: 10.13031/2013.19440.





DOI: 10.34286/1995-4646-2020-71-2-49-54

УДК 621.316.1.004.16


VITALIY V. TISHKOV, Postgraduater

TAMARA B. LESHINSKAYA, Advanced Doctor in Engineering Sciences, Professor

MIHAIL GALKIN, Postgraduate

Russian Timiryazev State Agrarian University, Russian Federation, Moscow



Abstract. A structural analysis of technological violations in the Balashikha distribution electric networks with a voltage of 6...10 kV was performed in the period from 01/01/2017 to 12/31/2018, in which there are agricultural consumers of various categories. Technological violations are an integral part in the operation of distribution electric networks and suffer great economic losses both for consumers of various categories and for network organizations. Based on the provided operational journals and lists of serviced electrical equipment by the electric grid organizations serving the Balashikha distribution electric networks, the author conducted a voluminous analytical work and identified the main problem areas, identified the economic losses of agricultural consumers, which should be paid special attention when forecasting repair work and designing new electric networks. The analysis clearly showed that the main problem of the Balashikha distribution electric networks is obsolete and worn cable lines with a voltage of 6...10 kV of the AAB and ASB brands, which require replacement, and in the case of further work, sparing operation and overhaul. The results of the study clearly formulate the problem areas of the Balashikha distribution electric networks and make it possible to use statistical data in the design of future repair work, as well as the formation of a “knowledge base” for creating a neural network for predicting possible technological violations in electric networks.

Key words: technological violation, electric network, damage, cable lines, overhead lines.



1. Instrukciya po rassledovaniyu i uchetu tekhnologicheskih narushenij v rabote energosistem, elektrostancij, kotel'nyh, elektricheskih i teplovyh setej [Instructions for the investigation and registration of technological violations in the operation of power systems, power plants, boiler rooms, electric and heat networks] RD 34.20.801-2000. M. : NC ENAS, 2012. 842 p.

2. Vodyannikov V. T. Ekonomicheskaya ocenka energetiki APK [Economic assessment of the energy sector of the agro-industrial complex] : uchebnoe posobie. M. : EKMOS, 2002. 304 p.

3. Perechen' elektrosetevogo oborudovaniya Balashihinskih elektricheskih setej na 31.12.2018 [The list of electric grid equipment of Balashikha electrical networks as of December 31, 2018]. Balashiha, 2018. 345 p.

4. Leshchinskaya T. B., Naumov I. V. Elektrosnabzhenie sel'skogo hozyajstva [Agriculture Power Supply] : uchebnik. M. : BIBKOM, TRANSLOG, 2015. 656 p.

5. Zhurnal tekhnologicheskih narushenij Balashihinskih elektricheskih setej za 2017-2018 god [Journal of technological violations of Balashikha electrical networks from 2017 to 2018]. Balashiha, 2018. 276 p.

6. Odnolinejnye skhemy TP, RP, KL, VL Balashihinskih elektricheskih setej - 2678 sht., 2018.

7. Ukrupnennye raschet stoimosti avarijno-vosstanovitel'nyh i remontnyh rabot na elektrosetevyh ob"ektah 0,46-10 kV [The enlarged calculation of the cost of emergency recovery and repair work on the power grid about "0 projects, h-sh-10 kv]. ZAO "BELS", 2018.

8. Horol'skaya V. Ya., Taranov M. A. Nadezhnost' elektrosnabzheniya [Power Reliability]: uchebnoe posobie. M. : FORUM: Infra M, 2013. 128 p.





DOI: 10.34286/1995-4646-2020-71-2-55-61

УДК 621.315.001.13-192


TAMARA B. LESHINSKAYA, Advanced Doctor in Engineering Sciences, Professor

SERGEY I. BELOV, Ph. D. of Engineering Sciences, Associate Professor

PAVEL S. PETROV, Postgraduate

Russian Timiryazev State Agrarian University, Russian Federation, Moscow



Abstract. The current reliability level of 10 kV distribution air lines and the refinement of reliability indicators based on the Bays approach to design are considered. This topic is relevant, since the inaccuracy of domestic statistics on the damage to rural networks is visible from comparing it with foreign data related to the same networks. In addition, the analysis of literature data on the reliability of electric networks shows that the indicators given in various sources differ in a wide range and are described by various distribution laws. The authors set the task - the refinement of reliability indicators based on the Bayesian approach. This technique and related calculations are presented in detail in the article. The result of the study is that the methodology increases the reliability of calculations on the reliability of 10 kV overhead distribution lines, and can also be used to clarify the reliability indicators of other elements of the electric network, such as transformers, bus structures, automatic sectioning and backup points, etc. the average values of reliability indicators in this case will have a greater degree of accuracy compared to those given in the literature.

Key words: energy, power supply, reliability, distribution networks, methodology, Bayesian approach, maintenance, repair.



1. Metodicheskie ukazaniya po opredeleniyu ekonomicheskoj effektivnosti sredstv povysheniya nadezhnosti v sel'skih elektricheskih setyah [Guidelines for determining the economic efficiency of reliability enhancement tools in rural electric networks]. M. : Sel'energoproekt, 1985. 130 p.

2. Gindulin F. A, Dul'zon N. A. V kachestve iskhodnoj informacii ob avarijnyh otklyucheniyah LEP 10 kV [As initial information on emergency power line outages 10 kv] // Izvestiya vuzov. Energetika. 1984. № 5. pp. 41-44.

3. Ukazaniya po primeneniyu pokazatelej nadezhnosti elementov energosistem i raboty energoblokov s paroturbinnymi elektroustanovkami [Guidelines for the use of reliability indicators for power system elements and the operation of power units with steam turbine electrical installations]. M. : Soyuztekhenergo, 1985. 19 p.

4. Pruss V. L., Tislenko V. V. Povyshenie nadezhnosti sel'skih elektricheskih setej [Improving the reliability of rural electricity networks]. L. : Energoatomizdat, 1989. 208 p.

5. Nadezhnost' elektrosnabzheniya [Power Reliability] / Pod red. I. A. Syromyatnikova. L. : Energiya, 1967. 272 p.

6. Leshchinskaya T. B. Metody vybora strategij razvitiya sistem elektrosnabzheniya sel'skih rajonov [Methods for choosing strategies for the development of rural electricity supply systems]: Avtoref. dis. dokt. tekhn. nauk: 05.20.02 / Leshchinskaya Tamara Borisovna. M. : VIESKH, 1990. 25 p.

7. Hej Dzh. Vvedenie v metody bajesovskogo statisticheskogo vyvoda [Introduction to Bayesian Statistical Inference Methods]. M. : Finansy i statistika, 1987. 335 p.





DOI: 10.34286/1995-4646-2020-71-2-70-75

УДК 629.


ALEKSANDER M. BELOKOVYLSKIY, Ph. D. of Engineering Sciences, Associate Professor

Penza State University of Architecture and Construction, Russian Federation, Penza



Abstract. Currently, the development trends of tractor engineering are focused on the growth of the tractor fleet, increasing the reliability and equal strength of units, reducing the complexity of their technical maintenance (MOT). However, issues related to their overall reliability remain obscured. Information on the reliability of specific samples produced by the domestic industry is either outdated or of a single nature, the same applies to foreign manufacturers. Compare with each other in terms of reliability of different samples is not possible. Thus, the country's agro-industrial complex (AIC) is faced with a choice: either to use its own tractors that have been previously developed and known for reliability, or to purchase more expensive highly reliable foreign analogues. To solve this problem, it is planned to analyze all available information on the reliability of tractors using mathematical statistics procedures and, on this basis, enable industry institutes to expand the source data system in order to more thoroughly study reliability and develop at least some preliminary recommendations for agricultural enterprises of their choice one or another tractor model.

Key words: tractors, analogue, reliability, MTBF, resource, operability, testing, operation.



1. Belokovyl'skij, A. M. Nadezhnost' avtomobil'nogo transporta: monogr [The reliability of road transport: monograph] / A.M. Belokovyl'skij. Penza: PGUAS, 2018. 172 p.

2. GOST 7751-2009. Tekhnika, ispol'zuemaya v sel'skom hozyajstve. Pravila hraneniya. URL:

3. Citovich I. S., Dorozhkin N. N., D'yachenko V. A. Bezotkaznost' i dolgovechnost' traktorov i sel'skohozyajstvennyh mashin [Reliability and durability of tractors and agricultural machines]. Minsk : Uradzhaj, 1977. 159 p.

4. Nefedov A. Monitoring nadezhnosti traktorov vysokoj moshchnosti dlya sela // Osnovnye Sredstva. 2012. № 7. URL:

5. GOST 27.002-2015. Nadezhnost' v tekhnike. Osnovnye ponyatiya. Terminy i opredeleniya. URL:

6. R 50-54-80-88. Rekomendacii. Nadezhnost' v tekhnike. Kompleksnye ispytaniya na nadezhnost'. Obshchie polozheniya. URL:

7. GOST 7057-2001. Traktory sel'skohozyajstvennye. Metody ispytanij. URL:

8. Reshetov D. N., Ivanov M. A., Fadeev V. Z. Nadezhnost' mashin [Machine reliability] / Pod red. D. N. Reshetova. M. : Vysshaya shkola, 1988. 238 p.





DOI: 10.34286/1995-4646-2020-71-2-76-85

УДК 621.1.027.32/.33


ALEKSEY A. PUTAN, The Educational Master

OLEG P. ANDREEV, Ph. D. of Engineering Sciences, Associate Professor

Russian Timiryazev State Agrarian University, Russian Federation, Moscow



Abstract. In animal husbandry, the creation and maintenance of an optimal microclimate in the animal habitat plays an important role in realizing the genetic potential of animals. Animals emit heat, which needs organization of the conditions of their maintenance, can be used to minimize heating costs. What is especially important in those regions where heating of animal habitats is required. In the structure of heat losses, ventilation of pig-breeding complexes can reach 70...80 % of the total heating costs. Therefore, it is so important to create equipment that could utilize part of this heat and return it back to the room. In view of the fact that ammonia is contained in the ventilation air, it is not possible to use heat regenerators for heat recovery in pig breeding, but it is advisable to use heat recovery units only with the separation of clean and ventilation air flows. A significant part of pig-breeding complexes is located in the central part of Russia, where the duration of negative temperatures is more than 3 months and peak negative temperatures can be below minus 20 ° С. In such operating conditions, additional requirements are imposed on the heat recovery equipment so that it maintains its working capacity and provides the required microclimate parameters. Such equipment can include heat recuperators with plastic air-to-air heat exchangers without separation of flows and with a defrosting system. The test results obtained indicate that the use of the proposed heat recovery unit with a defrosting system allows us to ensure the operability of the equipment at temperatures below minus 10 ° C and to ensure the supply of heated air to the room.

Key words: ventilation, microclimate, heat recovery, heat recovery, pig breeding, microclimate system, heating and ventilation system, energy saving, defrosting system.



1. RD-APK Metodicheskie rekomendacii po tekhnologicheskomu proektirovaniyu svinovodcheskih ferm i kompleksov [Guidelines for the technological design of pig farms and complexes]. M. : Minsel'hoz RF, 2012. 144 p.

2. Kirsanov V. V., Ignatkin I. Yu. Strujnaya model' pritoka ventilyacionnogo vozduha iz teploutilizacionnoj ustanovki [Inkjet model of ventilation air inflow from a heat recovery plant] // Vestnik Federal'nogo gosudarstvennogo obrazovatel'nogo uchrezhdeniya vysshego professional'nogo obrazovaniya "Moskovskij gosudarstvennyj agroinzhenernyj universitet imeni V. P. Goryachkina". 2018. № 2 (84). pp. 28-32.

3. Samarin V. A., Samarin G. N. Teoreticheskie osnovy energosberegayushchej tekhnologii formirovaniya mikroklimata v zhivotnovodcheskih pomeshcheniyah [Theoretical foundations of energy-saving microclimate formation technology in livestock buildings] // Sel'skohozyajstvennye mashiny i tekhnologii. 2010. № 5. pp. 36-38.

4. Rasstrigin V. N., Tihomirov A. V., Tihomirov D. A., Pershin A. F. Metodika rascheta energosberegayushchej sistemy mikroklimata s elektroteploutilizatorom i ozonatorom [Calculation method energy saving microclimate systems with an electric heater and an ozonator] // Tekhnika v sel'skom hozyajstve. 2006. № 2. pp. 19-23.

5. Trunov S. S., Rastimeshin S. A., Katkova Yu. B. Energosberegayushchie sistemy obespecheniya mikroklimata v zhivotnovodstve. Innovacii v sel'skom hozyajstve [Energy-saving microclimate systems in animal husbandry. Agricultural Innovation]. 2014. № 4 (9). pp. 155-159.

6. Novikov N. N. Raschet sistemy mikroklimata zhivotnovodcheskih pomeshchenij s aeraciej [Calculation of the microclimate system of livestock buildings with aeration] // Nauchnye trudy GNU VNIIMZH Rossel'hozakademii. 2007. T. 17. № 4. pp. 68-73.

7. Shackij V. P., Gulevskij V. A., Spirina N. G. Primenenie teploobmennikov (rekuperatorov) dlya normalizacii mikroklimata zhivotnovodcheskih pomeshchenij [The use of heat exchangers (recuperators) to normalize the microclimate of livestock buildings] // Izvestiya vysshih uchebnyh zavedenij. Stroitel'stvo. 2013. № 9 (657). pp. 64-68.

8. Ignatkin I. Yu., Bondarev A. M., Kuryachij M. G., Putan A. A., Arhipcev A. V. Opyt vnedreniya sistemy rekuperacii tepla ventilyacionnogo vozduha v sistemu podderzhaniya mikroklimata v svinarnike OOO "FIRMA "MORTADEL'" [Experience in introducing a ventilation heat recovery system into the microclimate maintenance system in the pigsty of MORTADEL FIRM LLC] // Innovacii v sel'skom hozyajstve. 2014. № 4 (9). pp. 256-261.

9. Ignatkin I. Yu. Energosberezhenie pri otoplenii v usloviyah krajnego severa [Energy Saving for Heating in the Far North] // Vestnik NGIEI. 2017. № 1 (68). pp. 52-58.

10. Geletij D. G., Arhipcev A. V. Ispol'zovanie generatorov goryachego i holodnogo tumana v svinovodstve [The use of hot and cold fog generators in pig farming] // Vestnik Vserossijskogo nauchno-issledovatel'skogo instituta mekhanizacii zhivotnovodstva. 2016. № 4 (24). pp. 100-102.

11. Ignatkin I. Yu. Optimizaciya effektivnosti utilizacii teploty vozduho-vozdushnogo rekuperatora [Optimization of heat recovery efficiency for an air-to-air heat exchanger] // Vestnik Federal'nogo gosudarstvennogo obrazovatel'nogo uchrezhdeniya vysshego professional'nogo obrazovaniya "Moskovskij gosudarstvennyj agroinzhenernyj universitet imeni V. P. Goryachkina". 2018. № 1 (83). pp. 34-39.

12. Schonhammer Warmetauscher und Luftungstechnik. Каталог оборудования. URL:

13. HDT Anlagenbau GmbH. Проспект - 2018. URL:

14. Josef Haufele GmbH & Co.KG. Каталог оборудования. URL:

15. Kirsanov V. V., Ignatkin I. Yu. Ocenka haraktera raspredeleniya pritochnogo vozduha v usloviyah strujnyh techenij  // Vestnik Federal'nogo gosudarstvennogo obrazovatel'nogo uchrezhdeniya vysshego professional'nogo obrazovaniya "Moskovskij gosudarstvennyj agroinzhenernyj universitet imeni V. P. Goryachkina". 2018. № 3 (85). pp. 35-41.

16. Putan A. A., Kuryachij M. G., Ignatkin I. Yu., Bondarev A. M., Arhipcev A. V. Sravnenie perspektivnyh sistem ohlazhdeniya dlya zhivotnovodstva [Comparison of promising cooling systems for livestock] // Innovacii v sel'skom hozyajstve. 2014. № 5 (10). p. 149-154.

17. Rekomendacii po raschetu i proektirovaniyu sistem obespecheniya mikroklimata zhivotnovodcheskih pomeshchenij s utilizaciej teploty vybrosnogo vozduha [Recommendations for the calculation and design of systems for ensuring the microclimate of livestock buildings with the utilization of the heat of exhaust air]. M. : FGNU NPC "Gipronisel'hoz", 1987.

18. Novikov N. N. Modelirovanie i raschet sistem mikroklimata zhivotnovodcheskih pomeshchenij. [Modeling and calculation of microclimate systems in livestock buildings]. M. : GNU VNIIMZH, 2013. 60 p.





DOI: 10.34286/1995-4646-2020-71-2-95-102

УДК 631.1:637.13(470.12)


FEDOR A. KIPRIYANOV, Ph. D. of Engineering Sciences, Associate Professor

Vologda State Dairy Farming Academy by N. V. Vereshchagin, Russian Federation, Vologda

PETR A. SAVINYKH, Advanced Doctor in Engineering Sciences, Professor, Senior Research Officer, Head of Laboratory

Federal Agricultural Research Center of the North-East named N. V. Rudnitsky, Russian Federation, Kirov


Abstract. Agricultural production is gradually increasing the impact on the economic development of not only specific regions, but also of Russia as a whole. Despite the significant difference in the level of efficiency of agricultural enterprises both between regions and between agricultural enterprises within a region, agricultural producers play a significant role in ensuring food stability and security throughout the country. The analysis of production efficiency, technologies and management methods used in leading enterprises allows us to form a development trend, which is a guide for enterprises with a lower level of production efficiency. The Vologda Oblast, being one of the leaders in the production of milk and dairy products, is an example of the introduction of advanced technologies in dairy farming for neighboring regions. Evaluation of the volume and efficiency of milk production is one of the most important tools for monitoring the agricultural industry, which allows us to classify enterprises according to the level of production efficiency in general. The article presents the results of a study of correlation dependencies for the main indicators of economic activity of agricultural enterprises of the Vologda region. Using cluster analysis, a grouping of agricultural enterprises was performed according to the number of cows and the level of milk production, which made it possible to reveal a significant difference in these indicators both among groups and among specific farms.

Key words: agricultural enterprises, production volume, number of cows, milk yield, gross milk yield, cluster analysis, grouping.



1. Top-30: regiony-lidery v proizvodstve moloka v sel'hozpredpriyatiyah v yanvare-fevrale 2018 goda. // Dairynews. URL:

2. Baza dannyh pokazatelej municipal'nyh obrazovanij // Federal'naya sluzhba gosudarstvennoj statistiki. URL:

3. Analiz proizvodstvenno-finansovoj deyatel'nosti sel'skohozyajstvennyh organizacij Vologodskoj oblasti za 2017 god [Analysis of the production and financial activities of agricultural organizations of the Vologda region in 2017] / Departament sel'skogo hozyajstva i prodovol'stvennyh resursov Vologodskoj oblasti. Vologda, 2018. 149 р.

4. Medvedeva N. A. Prognozirovanie razvitiya sel'skogo hozyajstva Evropejskogo Severa Rossii [Prediction of agricultural development in the European North of Russia]: monografiya. Vologda : VGMHA, 2017. 210 p.

5. Novozhilov A. I. Vliyanie uslovij funkcionirovaniya tekhnologicheskih sistem na effektivnost' tekhnologij v rastenievodstve [The influence of the functioning conditions of technological systems on the effectiveness of technologies in crop production] // Ekologicheskie aspekty mekhanizacii proizvodstva rastenievodstva: mater. Mezhdunarodnaya nauchno-prakticheskaya konferenciya. Varshava : Tip. "Svetoch", 2010. pp. 192-196.

6. Medvedeva N. A. Perspektivy razvitiya molochnogo skotovodstva regiona v usloviyah funkcionirovaniya VTO [Prospects for the development of dairy farming in the region under the conditions of the WTO] // Vestnik Povolzhskogo gosudarstvennogo universiteta servisa. Ser. Ekonomika. 2013. № 4(30). pp. 41-46.

7. Frumin I. L., Cvetkova E. V. Issledovanie nekotoryh problem agrarnoj ekonomiki metodom klasternogo analiza [The study of some problems of the agricultural economy by the method of cluster analysis] // Ekonomika i menedzhment. Izvestiya Chelyabinskogo nauchnogo centra. 2007. Vol. 4 (38).

8. Igoshin A. N., Cheremuhin A. D. Klasternyj analiz zernovogo sektora regiona [Cluster analysis of the grain sector in the region] // Vestnik NGIEI. 2015. № 7 (50). pp. 21-29.

9. Barinova O. I. Ocenka effektivnosti otrasli molochnogo skotovodstva s ispol'zovaniem klasternogo metoda [Evaluation of the effectiveness of the dairy industry using the cluster method] // Molochnohozyajstvennyj vestnik. 2012. № 1 (5). pp. 60-67.

10. Kayugina S. M. Klasterizaciya rajonov yuga Tyumenskoj oblasti po effektivnosti proizvodstva moloka [Clustering of regions of the south of the Tyumen region in terms of milk production efficiency] // Ekonomika i predprinimatel'stvo. 2017. № 8-3 (85-3). pp. 286-289.

11. Kipriyanov F. A., Shihova O. A. Ispol'zovanie metodov statisticheskogo analiza pri klimaticheskom rajonirovanii [Using methods of statistical analysis in climate zoning] // Colloquium-journal. 2018. №9-2 (20). pp. 40-43.

12. Kipriyanov F. A., Savinyh P. A. Territorial'no-klimaticheskoe rajonirovanie Vologodskoj oblasti i perspektivy ego ispol'zovaniya v zemledelii [Territorial climatic zoning of the Vologda region and the prospects for its use in agriculture] // Permskij agrarnyj vestnik. 2019. № 2(26). pp. 64-72.

13. Kipriyanov F. A., Savinykh P. A. Assessment of technical provision in agricultural sector of Russia // EurAsian Journal of BioSciences. 2019. № Т. 13. № 2. рр. 1651-1658.