Yurchenko I. F.

Automation of water distribution on interlocal irrigation systems


Martynova N. B., Korneev A. Y.

Machine for styling the drop tape into the potato row


Schmiegel V. V., Uglovsky A. S., Egorychev V. V.

Determination of parameters of the ozonator for periodic disinfection and stimulation of quail eggs


Andrianova L. P., Kabashov V. Yu.

Autonomous energy installation with birotory wind motor for energy supply of decentralized agricultural consumers


Leonov O. A., Shkaruba N. J., Odintsova A. A.

Evaluation of the quality of measuring processes in the manufacture of poultry meat products


Chеpurina Е. L., Chеpurin A. V., Kushnarеv S. L.

To justification of creation of the company's system engineering technical service of machines and equipment


Belokovylskiy A. M.

Methodological approach to the assessment of the failure of connections with tension






Rakutko S. A., Ivannikov N. Yu., Khomutova K. I.

Process approach of system ensuring of energy saving of the consumer in the power supply circuits of enterprises


Litvin N. V., Kolomiеc M. A.

Evaluation of the level of electric energy generation of solar battery based on statistical data


Krotenko E. A., Sveshnikov V. V.

Replacement of gas discharge lamps of high voltage on led with a purpose to reduce the influence on the environment


Lebedeva M. V., Anthropov A.P., Yashtulov N. A.

Development of effective materials on the basis of porous silicon for constructing of energy-saving devices with low-temperature


Krotenko E. A.

Research of work of high-voltage insulation in the conditions of pollution and moistening


Khismatullin A. S., Davletshin R. A., Bazarbayev R. K.

Study of the properties of liquid insulations with rising bubbles




















УДК 631.332.7

N. B. MARTYNOVA, Ph. D. of Engineering Sciences

A. Y. KORNEEV, graduate student

Russian Timiryazev State Agrarian University, Russian Federation, Moscow



Abstract. The need for potatoes in moisture in different phases of growth and development is analyzed and the need for irrigation to obtain a sustainable harvest is justified. Various irrigation methods are considered and the use of drip irrigation is recommended when growing potatoes, which has a number of advantages compared to other irrigation methods, the main is the delivery of irrigation water directly to the root layer, which significantly saves irrigation water. The dynamics of daily water consumption of potatoes throughout the growing season are analyzed, the development phases where the need for irrigation water reaches the highest values are identified. Rational timing of laying drip tape on 10−14 day from landing is defined. The irrigation rate has been established and irrigation has been recommended when the humidity reaches 75% of the maximum field capacity. The numerical values of the resistances arising in the process of laying the drip tape in the top soil layer of the potato crest are determined, the design of the drip tape stacker is developed, and laboratory studies are carried out with the stacker model to test theoretical assumptions. The rationality of combining the operations of combining with the installation of dropping tape is substantiated, the Grimme GF-75/4 combinator has been modified to the drip tape stacker by placing a stand with the drip tape coils and a tube guide tube on the comb former. A drip irrigation system was installed and field studies of growing potatoes of the “Zhukovsky Early” variety using drip irrigation were carried out. Watering in the study area was carried out during the growing season of potatoes; during the test, the irrigation time and the intervals between irrigations were adjusted. The intervals between irrigation depends on the phase of plant development and the amount of precipitation.

Key words: drip irrigation, irrigation regime, comb formation, basal zone, drip tape, drip tape stacker.



1. Apatenko A. S. Sovremennye tendencii razvitiya tekhnicheskogo potenciala melioracii zemel' // Vestnik Federal'nogo gosudarstvennogo obrazovatel'nogo uchrezhdeniya vysshego professional'nogo obrazovaniya "Moskovskij gosudarstvennyj agroinzhenernyj universitet imeni V. P. Goryachkina". 2013. № 2(58). pр. 23−25.

2. Krasnoshchekov V. N., Ol'garenko D. G. Modernizaciya meliorativnyh sistem kak glavnyj faktor obespecheniya prodovol'stvennoj i ekologicheskoj bezopasnosti strany // Prirodoobustrojstvo. 2016. № 4. pр. 51−57.

3. Melikhov V. V., Novikov A. A., Medvedeva L. N., Komarova O. P. Green technologies: the basis for integration and clustering of subjects at the regional level of economy // Contributions to economics; 2017: pp. 365−382.

4. Reyes-Cabrera J., Zotarelli L., Rowland D. L., Dukes M. D., Sargent S. A. Drip as alternative irrigation method for potato in Florida sandy soils // American Journal of Potato Research; 2015; 91(5): pp. 504−516.

5. Zhalnin E. V. O fundamental'nosti zemledel'cheskoj mekhaniki // Vestnik Federal'nogo gosudarstvennogo obrazovatel'nogo uchrezhdeniya vysshego professional'nogo obrazovaniya "Moskovskij gosudarstvennyj agroinzhenernyj universitet imeni V. P. Goryachkina". 2017. № 6(82). pр. 10−14.

6. Abdulmazhidov H. A., Matveev A. S. Kompleksnoe proektirovanie i prochnostnye raschety konstrukcij mashin prirodoobustrojstva v sisteme Inventor Pro // Vestnik Federal'nogo gosudarstvennogo obrazovatel'nogo uchrezhdeniya vysshego professional'nogo obrazovaniya "Moskovskij gosudarstvennyj agroinzhenernyj universitet imeni V. P. Goryachkina". 2016. № 2. pр. 40−46.

7. Martynova N. B., Korneev A. Yu. Razrabotka konstrukcii ukladchika kapel'noj lenty na baze grebnevatelya Grimme GF 75/4 dlya vyrashchivaniya kartofelya // Vestnik Federal'nogo gosudarstvennogo obrazovatel'nogo uchrezhdeniya vysshego professional'nogo obrazovaniya "Moskovskij gosudarstvennyj agroinzhenernyj universitet imeni V. P. Goryachkina". 2018. № 2(84). pр. 18−22.

8. Starovojtova O. A., Shabanov N. E. Vliyanie shiriny mezhduryadij na temperaturu, vlazhnost', plotnost' pochvy i urozhajnost' kartofelya // Vestnik Federal'nogo gosudarstvennogo obrazovatel'nogo uchrezhdeniya vysshego professional'nogo obrazovaniya "Moskovskij gosudarstvennyj agroinzhenernyj universitet imeni V. P. Goryachkina". 2016. № 4. рp. 34−40.

9. Karapetyan M. A., Shipancov A. M. Ot predposadochnoj podgotovki pochvy zavisit proizvoditel'nost' kartofeleuborochnogo kombajna i kachestvo uborki klubnej // Kartofel' i ovoshchi. 2012. № 4. pp. 7.

10. Borodychev V. V., Lytov M. N., Ovchinnikov A. S., Bocharnikov V. S. Optimal'noe upravlenie polivami na osnove sovremennyh vychislitel'nyh algoritmov // Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa: nauka i vysshee professional'noe obrazovanie. 2015. № 4(40). pр. 21−28.





УДК 669.782:621.315.592 

V. V. SCHMIEGEL, Advanced Doctor in Engineering Sciences, Professor

A. S. UGLOVSKY, Ph. D. of Engineering Sciences, Senior Lecturer

V. V. EGORYCHEV, Graduate Student

Yaroslavl State Agricultural Academy, Russian Federation, Yaroslavl



Abstract. Ozone production is one of the most typical industrial and commercial applications of an electric field. Ozone replaces chlorine for the treatment of drinking water, industrial wastewater, bleaching and bleaching. In this work, a high-voltage pulse source using an inverter resonant circuit is used to generate high frequency alternating current. The frequency range from 20 to 50 kHz is generated by the PIC18F452 microcontroller. This high frequency is fed to the horizontal transformer to create a voltage from 10 to 30 kV, and high voltage  is applied to the electrodes, where the association of oxygen molecules occurs. The yield per unit area increases, since it is directly proportional to the frequency and square of the set voltage. An increase in ozone concentration is also discussed using modeling and experimental methods. The proposed ozonator unit with an electrode system provides a constant output voltage (20 kV) with an inverter frequency. The technique has shown that the frequency of the high-voltage source significantly increases the concentration of ozone with improved voltage. Consequently, the installation provides a special design of the electrode and transformer. The system is capable of producing gas with a good concentration of ozone with a good yield per unit area.

Key words: electric field, ozonizer, dielectric constant, quail egg, electrode.



1. Kogelschatz U., Eliasson B., Egli W. Dielectric-Barrier Discharges : Principle and Applications. Journal Physics IV France 7, 1997. рр. 47−66.

2. Pietsch G. J., Gibalov V. I. Dielectric Barrier Discharges and Ozone Synthesis. Pure & Applied Chemistry. 1998. 70(6) : рр. 1169−1174.

3. Samaranayake W.J.M., Namihira T., Katsuki S., Miyahara Y., Sakugawa T., Hackam R., Akiyama H. Pulsed Power Production of Ozone Using Non thermal Gas Discharges July/August 2001 Vol. 17, No. 4.

4. Namihira T., Shinozaki K., Katsuki S., Hackam R., Akiyama H., Sakugawa T. Characteristics of Ozonizer Using Pulsed Power. IEEE Conference on Pulsed Power Plasma Science. 2001.

5. Chalmers I. D., Bairdy R. C., Kellyz T. Control of An Ozone Generator Theory and Practice. Measurement Science Technology. 1998. 9(6) : рр. 983−988.

6. Patel M. A., Patel A. R., Vyas D. R., Patel K. M. Use of PWM Techniques for Power Quality Improvement, International Journal of Recent Trends in Engineering, Vol. 1, No. 4, May 2009. pp. 99−102.

7. Ono Ryo, Oda Tetsuji Ozone Production Process in Pulsed Positive Dielectric Barrier Discharge. Journal Physics D : Appl. Physics. 2007. 40 : рр. 176−182.

8. Buntat Z., Smith I. R., Razli N. A. M. Ozone Generation by Pulsed Streamer Discharge in Air. Applied Physics Research. 2009. 1(2) : рр. 1−10.

9. Naidu M. S., Kamaraju V. High Voltage Engineering. (3rd ed.). New Delhi : Tata McGraw-Hill Publishing Company Limited. 2004.

10. Kitayama J., Kuzumoto M. Theoretical and Experimental Study On Ozone Generation Characteristics of An Oxygen-Fed Ozone Generator In Silent Discharge. Journal Of Appl. Physics. 1997. 30 : рр. 2453−2461.

11. Chupina L. V. Pticevodstvo. Tekhnologiya proizvodstva myasa pticy: ucheb.-metod. posobie / Novosib. gos. agrar. uni-t., biol.-tekhnolog. fakt; sost.: L. V. Chupina, V. A. Rejmer. Novosibirsk : NGAU, 2016. 39 p.





УДК 631.371:621.311.24 

L. P. ANDRIANOVA, Advanced Doctor in Engineering Sciences, Professor

V. Yu. KABASHOV, Advanced Doctor in Engineering Sciences, Associate Professor

Bashkir State Agrarian University, Russian Federation, Ufa



Abstract. The article describes the power plant with a wind turbine of the original design, generating increased power to produce both mechanical and electrical energy. A biotrotor wind turbine consists of two coaxial rotors with radial wind vanes relative to the rotor. The cross section of the wind blades is the profile of the aircraft wing with a flat-convex outer profile, and the longitudinal axis of rotation of the blades is shifted towards the leading edge. The blades are deployed relative to the incoming flow of air with a flat angle of attack of 40 ° in opposite directions on the first and second wind wheel relative to each other. Mechanisms of blade rotation from 40 ° to 0 ° relative to the axis of rotation of the rotors around the longitudinal axes of the blades are built into the rotors of the windwheels. The case of a wind turbine with an outer cylindrical surface and an inner barrel-shaped is the air flow guide a diffuser with high aerodynamic quality. The wind turbine is mounted on a rotating frame with a stabilizer, which unfolds and orienting the structure the axis of rotation of the rotors in the direction of the wind. The air flow flows around the cone, located in front of the rotor of the first propeller, compacted and directed into the diffuser, connecting with the flow flowing around the inner convex surface of the outer ring, while the speed of the total flow increases. The total flow creates a dynamic pressure on the blades, rotated to the flow at an angle of 40 °, rotating the propeller in opposite directions, transmitting the rotation through coaxial shafts to two electric generators. A power plant with a bi-axial wind turbine is recommended to provide ecologically safe energy to remote farms from centralized power supply.

Key words:  autonomous power plant, decentralized consumer, bi-axial wind turbine, horizontal axis of rotation, coaxial wind wheels, radial blade, guide vane.



1. GOST R 56124.1–2014 (IEC/TS 62257-1:2003) Vozobnovlyaemaya energetika. Gibridnye elektrostancii na osnove vozobnovlyaemyh istochnikov energii, prednaznachennye dlya sel'skoj elektrifikacii. Rekomendacii. CHast' 1. Obshchee vvedenie dlya sel'skoj elektrifikacii. Vved. 01−07−2016; akt. 01.01.2019. M. : Standartinform, 2015. 7 p.

2. GOST R 56124.2–2014 (IEC/TS 62257-2:2004) Vozobnovlyaemaya energetika. Gibridnye elektrostancii na osnove vozobnovlyaemyh istochnikov energii, prednaznachennye dlya sel'skoj elektrifikacii. Rekomendacii. CHast' 2. Iz trebovanij po klassifikacii sistem elektrosnabzheniya. Vved. 01−07−2016; akt. 01.01.2019. M. : Standartinform, 2016. 54 p.

3. Zuev N. V. Povyshenie urovnya energoobespechennosti bytovyh potrebitelej v dome fermera putem issledovanij i sozdaniya konkurentnosposobnoj avtonomnoj vetroelektricheskoj ustanovki maloj moshchnosti: avtoref. dis. kand. tekhn. nauk / Zuev Nikolaj Viktorovich. SPb., 2000.

4. Andrianova L. P.,  Osipova I. V. Vetroenergoustanovka s dvumya soosnymi vetrokolesami s radial'nymi lopastyami // Materialy mezhdunarodnoj NPK v ramkah mezhdunarodnoj specializirovannoj vystavki "Agrokompleks-2014". Ufa : BashGAU, 2014. pр. 197−201.

5. Andrianova L. P., Osipova I. V. Avtonomnaya vetroenergeticheskaya ustanovka s birotornym vetrodvigatelem // Aktual'nye problemy energoobespecheniya predpriyatij: Materialy mezhdunarodnoj nauchno-prakticheskoj konferencii, provodimoj v ramkah HIV Rossijskogo energeticheskogo foruma. Ufa : Bashkirskij GAU, 2014. pр. 41–44.





УДК (637.5:636.5) 

O. A. LEONOV, Advanced Doctor in Engineering Sciences, Professor

N. J. SHKARUBA, Ph. D. оf Engineering Sciences, Professor


Russian Timiryazev State Agrarian University, Russian Federation, Moscow



Abstract. An effective tool to ensure the safety of the production of semi-finished poultry meat is a management system built on the principles of HACCP. Such a system ensures the identification of risks affecting safety and allows reducing their influence or eliminating it. One of the factors affecting the increase in risks is the low level of metrological support for critical control points, since the reliability of the received measurement information depends on this. To assess the acceptability of the measuring processes of the critical control points for the production of semifinished poultry meat, it was proposed to use a technique based   on the analysis of measuring systems (MSA). The analysis of the metrological support of the critical control points of the production process of semi-finished poultry meat was carried out Studies of the variability of the results of temperature measurements in the thickness of the cooled and thawed meat raw materials in real production conditions have been carried out.  At the first stage, using control charts, it is established that the measurement process is in a stable state. At the second stage, the absolute and relative offset values of the measurement process are calculated. At the third stage, the components of the variability of the measurement results were evaluated. At the final stage, when ranking the obtained values, priority ways of reducing the variability of the measuring process were determined. The analysis showed that the measurement process requires improvement. The greatest contribution to the variability of the measuring process of temperature in the thickness of the raw meat is the variability of the sample (cooled and thawed). Also, the variability of the measurement process is affected by the convergence of measurement results. Replacing the measurement method or choosing a more accurate measurement tool reduces variability. The proportion of the controller's influence on the variability turned out to be insignificant. The proposed approach to assessing the acceptability of measuring processes at critical control points of the HACCP system allows minimizing the risk of making false decisions when monitoring product quality and reducing the frequency of technological regulation of the production process.

Key words: safety, requirements, quality, poultry meat, convenience food, control, critical control points.



1. Shuvarikov A. S., Lisenkov A. A. Tekhnologiya hraneniya, pererabotki i standartizaciya produkcii zhivotnovodstva. M. : Izd-vo RGAU-MSKHA, 2008. 606 p.

2. Grikshas S. A. Tekhnologiya pererabotki produktov uboya zhivotnyh. M. : RGAU-MSKHA, 2013. 316 p.

3. Grikshas S. A., Cherekaeva Е. A. Organolepticheskaya ocenka myasa svinej raznyh porod i porodosochetanij // Svinovodstvo. 2005. № 3. рр. 6−7.

4. Sharafutdinov G. S. Standartizaciya, tekhnologiya pererabotki i hraneniya produkcii zhivotnovodstva. M. : Lan', 2016. 288 p.

5. Grikshas S. A., Kazakova Е. V., Gurin A. V., Korenevskaya P. A. Tekhnologiya hraneniya i pererabotki myasa i myasoproduktov. M. : Izd-vo RGAU-MSKHA imeni K. A. Timiryazeva, 2016. 164 p.

6. Rogov I. A. Bezopasnost' prodovol'stvennogo syr'ya i pishchevyh produktov // Sovremennye problemy nauki i obrazovaniya. 2009. № 1. 34 p.

7. Dunchenko N. I., Kupcova S. V., Kapotova M. S. Kontrol' apparatnogo cekha po kriticheskim tochkam // Molochnaya promyshlennost'. 2002. № 6. рр. 48−50.

8. Leonov O. A., Shkaruba N. Zh. Elementy sistemy HAASP pri proizvodstve vareno-kopchenyh kolbas // Pishchevaya promyshlennost': nauka i tekhnologii. 2018. № 2 (40). рр. 44−52.

9. Leonov O. A., Shkaruba N. Zh. Metrologicheskoe obespechenie kontrolya kachestva i bezopasnosti pri proizvodstve vareno-kopchenyh kolbas na predpriyatiyah APK // Izvestiya TSKHA. 2018. № 3. рр. 95−110.





УДК 631.173 

Е. L. CHЕPURINA, Ph. D. of Engineering Sciences, Associate Professor

A. V. CHЕPURIN, Ph. D. of Engineering Sciences, Associate Professor

Russian Timiryazev State Agrarian University, Russian Federation, Moscow

S. L. KUSHNARЕV, Ph. D. of Engineering Sciences, Associate Professor

Bauman Moscow State Technical University, Russian Federation, Moscow



Abstract. The development strategy of the proprietary system of engineering and technical service of machinery and equipment should be aimed at fully meeting the needs of producers of goods and services in engineering, material and technical resources and services of production, technological and technical services in order to increase production of high-quality agricultural products with minimal production costs. The analysis of the state and organization of the use of agricultural machinery at enterprises of the agro-industrial complex is presented. Identified innovative areas to improve the efficiency of machines and equipment of domestic production. The main ones are the development and creation of a proprietary system of engineering and technical service, the organization of manufacturers of equipment and their technological modernization. Research results will reduce production costs due to specialization and concentration of production by more than 10%; optimization of the distribution of processes and work and the formation of production structures – up to 20%; reducing the cost of maintaining the fleet by 1.4–1.7 times; development and implementation of corporate technical service – 5–10 times. The results of the research indicate the need to improve the quality of production, parameters of reliability and efficiency of modern domestic technology based   on the accelerated practical development and implementation of a proprietary production system and engineering and technical service of domestic machinery and equipment, ensuring their quality above the level of world analogues.

Key words: manufacturing company, company engineering and technical service, technological modernization, production and technical potential.



1. Problemy tekhnicheskogo servisa v APK Rossii / V. I. CHernoivanov, A. E. Severnyj, L. I. Kushnarev [i dr.] / GOSNITI. M. , 2000. 512 р.

2. Kushnarev L. I. Problemy razvitiya mashinno-tekhnologicheskih stancij // Traktory i sel'hozmashiny. 2013. № 5. рр. 49–51.

3. Kushnarev L. I. Tekhnicheskaya osnashchennost' predpriyatij i realizaciya strategii razvitiya sel'hozproizvodstva // Ekonomika sel'skohozyajstvennyh i pererabatyvayushchih predpriyatij. 2013. № 10. рр. 19–21.

4. Kushnarev L. I. CHepurina Е. L., Kushnarev S. L. Problemy i napravleniya razvitiya inzhenerno-tekhnicheskogo obespecheniya sel'skih tovaroproizvoditelej // Remont, vosstanovlenie, modernizaciya. 2016. № 1. рр. 3–9.

5. Kushnarev L. I. Metodika obosnovaniya parametrov modernizacii remontno-tekhnicheskoj bazy predpriyatij, ekspluatiruyushchih sel'hoztekhniku // Remont, vosstanovlenie, modernizaciya. 2015. № 12. рр. 40–44.

6. Kushnarev L. I., Chepurina Е. L., Chepurin A. V., Kushnarev S. L. Osnovy inzhenernotekhnicheskogo obespecheniya agropredpriyatij: Uchebnik dlya vuzov / Pod obshch. red. L. I. Kushnareva. Ser. Inzhenerno-tekhnicheskoe obespechenie agropromyshlennogo kompleksa. M. : FGBNU "Rosinformagrotekh", 2015. 222 р.

7. Kushnarev L. I., Chepurina Е. L. Rol' i mesto proizvoditelej sel'hoztekhniki v firmennom tekhnicheskom servise // Tekhnika i oborudovanie dlya sela. 2013. № 7. рр. 38−40.

8. Kushnarev L. I., Didmanidze O. N. Sostoyanie i napravleniya innovacionnogo razvitiya inzhenerno-tekhnicheskoj sluzhby APK // Mezhdunarodnyj tekhniko-ekonomicheskij zhurnal. 2014. № 1. рр. 31–40.

9. Kushnarev L. I. Firmennyj tekhnicheskij servis mashin i oborudovaniya. Problemy. Poiski. Resheniya: monografiya. Saarbrucken, Deutschland / Germaniya. Palmarium. Academic publishirig, 2014. 210 р.

10. Kushnarev L. I., Chepurina Е. L., Chepurin A. V., Kushnarev S. L. Kachestvo i nadezhnost' otechestvennoj tekhniki – osnova ee konkurentosposobnosti // Nivy Zaural'ya. № 11 (133). Dekabr' 2015. рр. 52−54.

11. Kushnarev L. I. K probleme importozameshcheniya i konkurentosposobnosti tekhniki // Trudy GOSNITI. 2016. Tom 123. Ch. 1. рр. 79–85.

12. Kushnarev L. I., Chepurina Е. L., Chepurin A. V., Kushnarev S. L. Organizaciya tekhnicheskogo servisa mashinno-traktornogo parka na predpriyatiyah agropromyshlennogo kompleksa: Uchebnik. Seriya: Inzhenerno-tekhnicheskoe obespechenie agropromyshlennogo kompleksa. M. : FGBNU "Rosinformagrotekh", 2015. 245 р.

13. Kushnarev L. I. K resheniyu problemy povysheniya konkurentosposobnosti otechestvennoj tekhniki // Remont, vosstanovlenie, modernizaciya. 2017. № 5. рр. 3–8.

14. Stupnikov V. P., Kushnarev L. I., Aleshin V. F., Slinko D. B. Innovacionnoe napravlenie v nauchno-obrazovatel'nom processe tekhnicheskih vuzov // Remont, vosstanovlenie, modernizaciya. 2016. № 2. рр. 3–8.





УДК 621.85.058-192

A. M. BELOKOVYLSKIY, Ph. D. of Engineering Sciences, Associate Professor

Penza State University of Architecture and Construction, Russian Federation, Penza


Abstract. One of the most important indicators of reliability is the probability of failure-free operation. Evaluation of the reliability of compounds with tension is caused by the need to conduct research to establish the dependence of indicators of this property on a fairly large set of various design and operational parameters: torque limit on adhesion, lateral compression ratio, pressure in the joint, roughness of mating surfaces, geometrical dimensions of parts, etc. It is proposed to solve this problem by implementing the theory of scientific planning of the experiment using as fact Design and operational parameters, and as a response quantile normalized normal distribution. Calculations are planned with using step-by-step principle. First, the responses and factors are investigated from the initial data, then they go to the formulas obtained from the secondary data, and so on to the final quantile estimation formula, which later determines the probability of failure-free operation. The proposed methodological approach allows to solve the problem of the relative assessment of the probability of failure-free operation under the influence of factors for connections with interference, for example, the ZIL-131 gearbox. After finalizing the calculation formulas for physical processes, the proposed approach can be used to calculate the probability of failure-free operation of machine parts of other groups.

Key words: connection, interference, reliability, reliability, probability of failure-free operation, response, factors.



1. Belokovyl'skij A. M. Raschet bezotkaznosti tekhnicheskih sistem pri smeshannom soedinenii elementov // Ekologiya, energoi resursosberezhenie v stroitel'stve i na transporte: Sbornik nauchnyh trudov Mezhdunarodnoj nauchnoj konferencii (14−15 iyunya 2012 g.). Penza : PGUAS, 2012. 102 p.

2. Belokovyl'skij A. M. Metodicheskij podhod k raschetu veroyatnosti bezotkaznoj raboty avtomobilya i ego sostavnyh chastej // Problemy kachestva i ekspluatacii avtotransportnyh sredstv: Materialy IV mezhdunarodnoj nauchno-tekhnicheskoj konferencii. Ch. 2. Penza : Gosudarstvennyj universitet arhitektury i stroitel'stva, 2006. 444 p.

3. GOST 27.002−2015. Nadezhnost' v tekhnike. Osnovnye ponyatiya. Terminy i opredeleniya [Elektronnyj resurs]. URL:

4. Reshetov D. N., Ivanov M. A., Fadeev V. Z. Nadezhnost' mashin / Pod red. D. N. Reshetova. M. : Vysshaya shkola, 1988. 238 p.

5. Belokovyl'skij A. M. Nadezhnost' avtomobil'nogo transporta: monografiya. Penza : PGUAS, 2018. 172 p.

6. Spravochnik tekhnika-konstruktora / Ya. A. Samohvalov, M. Ya. Levickij, V. D. Grigorash. 3-e izd., pererab. i dop. Kiev : Tekhnika, 1978. 592 p.

7. Chuhnin V. N. Nadezhnost' tekhnicheskih i tekhnologicheskih sistem: monografiya; pod red. prof. V. B. Moiseeva. Penza : Izd-vo Penz. gos. tekhnol. akad., 2010. 400 p.

8. Adler Yu. P., Markova Е. V., Granovskij Yu. V. Planirovanie eksperimenta pri poiske optimal'nyh reshenij. 2-e izd., pererab. i dop. M. : Nauka, 1976. 279 p.










УДК (621.311:338.43).004.18

S. A. RAKUTKO, Advanced Doctor in Engineering Sciences, Chief Scientist, Head of Laboratory

Institute for Engineering and Environmental Problems in Agricultural Production, Russian Federation, Saint Petersburg

N. Yu. IVANNIKOV, Ph. D. in Engineering Sciences, Head of Department

Murmansk State Technical University, Russian Federation, Murmansk

K. I. KHOMUTOVA, Customer Relationship Team Specialist, Department of Technological Connection and Customer Relations

Northern Electric Networks, Russian Federation, Saint Petersburg



Abstract. On the basis of the Federal Law of 23.11.2009 No. 261-ФЗ (as amended on 12/27/ 2018) “On energy saving and on increasing energy efficiency and on introducing changes to certain legislative acts of the Russian Federation”, the problem of energy saving is the main one. It is acutely manifested in the power supply schemes of enterprises. Factors such as high energy consumption of products and low energy intensity of labor not only became a confirmation of the urgency of the problem of energy saving and the existence of serious energy deficiencies, but also showed that they are the most important factors in the production sector. These factors force us to analyze the work of consumer energy systems. From the energy efficiency of the enterprise depends on its performance and product quality. The competitiveness of products depends directly on its quality. Fundamentally, there are two possible directions in the energy policy of an enterprise – an energy efficient economy and energy saving. Energy efficiency has fundamental differences in the development directions and approaches of the state energy supply. Energy efficiency should be considered in two aspects. The first is a reduction in fuel and (or) energy consumption per unit of output or GDP, the second is measures whose implementation ensures the achievement of economic effect by improving the structure of the energy process and production itself. The change in losses in any energy line is a reaction to a change in their “state” as a function of many factors.

Key words: energy saving, energy efficiency, energy intensity of products, losses, electric power system.



1. Pravila ustrojstva elektroustanovok. 7-e izd. M. : Energiya, 2018. 648 p.

2. Buinov P. P. Elektrosnabzhenie promyshlennyh predpriyatij: Metodicheskie ukazaniya. Chita : CHitGTU, 2015. 32 p.

3. Spravochnik po proektirovaniyu elektrosnabzheniya / pod red. Yu. G. Barybina [i dr.]. M. : Energopromizdat, 2015. 576 p.

4. SЕW ЕURODRIVЕ Proektirovanie elektroprivodov. 11/2016.

5. Neklepaev B. N., Kryuchkov I. P. Elektrotekhnicheskaya chast' elektrostancij i podstancij: Spravochnye materialy dlya kursovogo i diplomnogo proektirovaniya: uchebnoe posobie dlya vuzov. 4-e izd., pererab. i dop. M. : Energoatomizdat, 2009. 608 p.

6. Fedorov A. A., Starkova L. Е. Uchebnoe posobie dlya kursovogo i diplomnogo proektirovaniya promyshlennogo predpriyatiya: uchebnoe posobie dlya vuzov. M. : Energopromizdat, 2016. 368 p.

7. Pasport i rukovodstvo po ekspluatacii chastotnyh preobrazovatelej serii FR700 Mitsubishi, 2017. 192 p.

8. Filippov S. A. Vybor apparatov zashchity dlya elementov nizkovol'tnoj elektricheskoj seti: metodicheskie ukazaniya. Chita : ChitGTU, 2016. 28 p.





УДК (620.9:311).003.12

N. V. LITVIN, Ph. D. of Engineering Sciences, Associate Professor

M. A. KOLOMIЕC, Student

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Russian Federation, Moscow



Abstract. Due to the significant impact on the environment of traditional energy sources and the constant increase in their cost, considerable attention has recently been paid to alternative and renewable energy. However, the use of such sources is associated with the need to determine the projected levels of generation of electricity for a selected period of time, which would optimize their modes of operation. Currently, the tasks of improving the metrological support of solar radiation conversion processes, increasing the accuracy, sensitivity and stability of equipment for measuring temperature, temperature difference, energy parameters and efficiency of solar converters are being actualized. The main need that arises when trying to probabilistic description of random processes, which include the level of generation of electricity for a certain period of time, is the availability of statistical information based on long-term observations of the functioning of these processes. In order to form optimal control algorithms for microenergy systems with multiple sources of electricity, it is necessary to coordinate energy parameters (primary energy potential, levels of electricity generation, power consumption schedules, quality of electrical energy, reliability of the electricity system, etc.) to ensure minimum electricity cost. As a result of the simulation carried out in the article, mathematical dependencies were obtained to determine the amount of electrical energy generated by a solar battery over a selected period of time using the Gauss function. The proposed technique can be used in the development of power supply system control algorithms with renewable energy sources.

Key words: solar energy, battery, power, generation, model, approximation, Gauss function.



1. Hlopunov K. A., Ushakova O. Yu. Izuchenie al'ternativnyh (vozobnovlyaemyh) istochnikov energii. izgotovlenie solnechnogo kollektora // Yunyj uchenyj. 2018. № 1(15). рp. 94−98.

2. Anahin N. Yu. Solnechnye batarei − real'nost' ili fantastika? // Voprosy nauki i obrazovaniya. 2018. № 26(38). рp. 26−28.

3. Aref M., Udincev V. N., Oboskalov V. P. Cifrovoe upravlenie trekhfaznym trekhurovnevym invertorom dlya solnechnyh batarej // Promyshlennaya energetika. 2018. № 6. pp. 50−59.

4. Rumyancev S. D. Issledovanie sistem energosnabzheniya na baze solnechnyh batarej // NovaInfo. Ru. 2018. T. 1. № 89. рp. 14−18.

5. Karkozhka M. Paneli solnechnyh batarej dlya racional'nogo resheniya po upravleniyu rezhimom elektropitaniya // Gruzovoe i passazhirskoe avtohozyajstvo. 2018. № 7. рp. 38−39.

6. Bulycheva Е. A., Kiselev K. O., Saforzoda A. H. Intellektual'nyj nauchno-issledovatel'skij kompleks al'ternativnoj energetiki // Energosberezhenie i vodopodgotovka. 2018. № 5(115). pp. 71−78.

7. Stepanenko V. P. Vybor resursosberegayushchih istochnikov i nakopitelej energii v sistemah avtonomnogo energosnabzheniya // Gornyj informacionno-analiticheskij byulleten'. 2018. № 2. рp. 42−49.

8. Sapakov N. D. Raschet oborudovaniya avtonomnogo energosnabzheniya doma // Nauchnomu progressu – tvorchestvo molodyh. 2018. № 2. рp. 129−131.





УДК 621.32:574 

E. A. KROTENKO, Ph. D. of Engineering Sciences, Associate Professor

V. V. SVESHNIKOV, Ph. D. of Engineering Sciences, Senior Researcher, Associate Professor

Omsk State Transport University, Russian Federation, Omsk



Abstract. This article describes the technical proposals for the modernization of the elements of the outdoor lighting system at the node sorting station in order to increase its reliability and ensure energy efficiency in order to reduce the impact on the environment. Station on the nature of the work nodal, sorting. Type of contact network 3 kV DC. The adopted technical solutions for the modernization of the elements of the outdoor lighting system must comply with the requirements of the norms and rules in force in the territory of the Russian Federation, ensure the safe operation of the facility and meet the requirements of rational use of electricity. Currently, it is planned to replace the existing lighting system with an energy-saving one, with automation in terms of operating mode control. When deciding on the installation of a LED light source, you must clearly represent all the pros and cons of this type of luminaire. The main advantages of a semiconductor illuminator include low power consumption. LED technology is very economical in terms of energy consumption, and therefore LED spotlight with the same power shines 8-9 times brighter, equipped with an incandescent lamp, including halogen and metal halide illuminators. It is advisable to use for lighting mast height of 35 m and with an extended platform. The masts of 15 and 21 m for illuminating the parks of paths are unacceptable, as this leads to a large shadowing of the inter-paths.

Key words: junction station, traffic safety, power of light sources, reliability of the lighting installation, consumption of electrical energy, reduction of environmental impact.



1. Pravila tekhnicheskoj ekspluatacii zheleznyh dorog RF. 2011. 87 p.

2. OST 32.120−98. Normy iskusstvennogo osveshcheniya ob"ektov zheleznodorozhnogo transporta. M. : Transport, 1998. 32 p.

3. SNiP 23-05−95. Еstestvennoe i iskusstvennoe osveshchenie. M. : Izd-vo standartov, 1995. 23 p.

4. Instrukciya po bezopasnosti pri ekspluatacii elektroustanovok tyagovyh podstancij i rajonov elektrosnabzheniya zheleznyh dorog OAO "RZHD". Moskva, 2008. 192 p.

5. Normativno-metodicheskaya dokumentaciya po ekspluatacii kontaktnoj seti i vysokovol'tnyh vozdushnyh linij. CE MPS. M. : Transport, 2001. 512 p.

6. Spravochnik po elektrosnabzheniyu zheleznyh dorog. T. 1 / pod red. K. G. Markvardta. M. : Transport, 1980. 256 p.

7. POTR M-016-2001. Mezhotraslevye pravila po ohrane truda pri ekspluatacii elektroustanovok. RD 153-34.0-03.150-00.

8. Koc A. Ya. Osveshchenie elektricheskih stancij i podstancij. 4-e izd., pererab. i dop. M. : Energoizdat, 1981. 168 p.

9. Kogan L. M. Poluprovodnikovye svetoizluchayushchie diody. M., 1983.

10. Afanas'ev V. B., Gal'china N. A., Kogan L. M., Rassohin I. T. Svetodiodnye osvetitel'nye i svetosignal'nye pribory s uvelichennym svetovym potokom // Svetotekhnika. 2004. № 6. рp. 52−56.





УДК 621.184.64

M. V. LEBEDEVA, Ph. D. of Chemical Sciences, Senior Lecturer

A. P. ANTHROPOV, Ph. D. of Engineering Sciences, Associate Professor

N. A. YASHTULOV, Advanced Doctor in Chemical Sciences, Professor

MIREA — Russian Technological University, Russian Federation, Moscow



Abstract. Nowadays, the problem of constructing energy-saving devices with enhanced specific characteristics and environmental friendliness is one of the main tasks of modern technogenic society. Advances in the development of hydrogen technologies have demonstrated that the use of hydrogen and hydrogen-containing fuels leads to qualitatively new indicators in the operation of energy systems. Researchers around the world are actively working to create efficient energy-saving devices that convert the energy of an electrochemical reaction into electrical energy. One such energy source is fuel cells. The focus is on the study of elements that use formic acid as a fuel. The paper discusses the prospects for creating materials on porous silicon to create micro fuel cells. A characteristic of the parameters of porous silicon, especially its formation, modification and research. The experimental data of the investigated prototypes of fuel cells on porous silicon in the oxidation of hydrogen and formic acid are presented. To facilitate the integration of NTESU into the power system, it is necessary to apply new or improved technical solutions. The most rational decisions in the field of energy are: storage, transformation, improvements in production (reduction of material consumption, as well as the duration of the process), energy saving. Among the various approaches which are used to solve these problems, it is worth mentioning new materials used in batteries, fuel cells and solar batteries, as catalysts, as well as durable, lightweight structural elements.

Key words: energy-saving devices, low-temperature fuel cells, functional nanocomposites, energy characteristics.



1. Dicks A., Rand D. A. J. Fuel cell systems explained. Wiley, USA, 2018. 488 p.

2. Gandia L. M., Arzamedi G. Renewable hydrogen technologies: production, purification, storage, applications and safety. Elsevier, 2013. 472 p.

3. Tilli M., Motooka T., Airaksinen V.-M., Franssila S., Paulasto-Krockel M., Lindroos V. Handbook of Silicon Based MEMS Materials and Technologies (Second Edition). Elsevier. 2015. 826 p.

4. Yashtulov N. A., Lebedeva M. V. Hydrogen energy, renewable power sources // Journal of Russian technology. 2017. Vol.5. No. 3. pp. 58–73.

5. Stolten D., Emonts B. Fuel cell science and engineering: materials, processes, systems and technology. Wiley-VCH Verlag GmbH & Co KGaA, 2012. V. 1−2. 1268 p.

6. Nativ-Roth E., Rechav K., Porat Z. Deposition of gold and silver on porous silicon and inside the pores // Thin Solid Films. 2016. V. 603. рр. 88−96.

7. Kumar D., Maity S., Sarkar A. Study the size and distribution of thin nano-porous film of silicon substrate through chemo-thermal treatment for dry fuel cell application // Optik. 2016. V. 127. № 22. рр. 10450−10456.

8. Wang M., Liu L., Wang X. A novel proton exchange membrane based on sulfofunctionalized porous silicon for monolithic integrated micro direct methanol fuel cells // Sensors and Actuators B: Chemical. 2017. V. 253. рр. 621−629.

9. Cui Y., Liu Y., Wu J., Zhang F., Baker A.P., Lavorgna M., Wu Q., Tang Q., Lu J., Xiao Z., Liu X. Porous silicon-aluminium oxide particles functionalized with acid moieties: An innovative filler for enhanced Nafion-based membranes of direct methanol fuel cell // Journal of Power Sources. 2−18. V. 403. рр. 118−126.

10. Oruc C., Guler S. Effect of Au, Ag and Cu thin films' thickness on the electrical parameters of metal-porous silicon direct hydrogen fuel cell // International Journal of Hydrogen Energy. 2014. V. 39. № 35. рр. 20183−20189.

11. Desplobain S., Gautier G., Ventura L., Bouillon P. Macroporous silicon hydrogen diffusion layers for micro-fuel cells // Phys. Stat. Sol. 2009. V. 206. рр. 1282−1285.

12. Morse J. D. Micro-fuel cell power sources // Int. J. Energy Res. 2007. V. 31. рр. 576−602.

13. Moghaddam S., Pengwang E., Jiang Y. An inorganic-organic proton exchange membrane for fuel cells with a controlled nanoscale pore structure // Nature Nanotechnology. 2010. V. 5. рр. 230−235.

14. Chu K.-L., Shannon M. A., Masel R. I. Porous silicon fuel cells for micro power generation // The Sixth International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, Nov. 29 − Dec. 1, 2006, Berkeley, U.S.A. рр. 255–258.

15. Lee C.-Y., Lee S.-J., Dai C.-L., Chuang C.-W. Application of porous silicon on the gas diffusion layer of micro fuel cells // Key Engineering Materials. 2008. V. 364. рр. 849−854.

16. Lebedeva M. V., Antropov A. P., Ragutkin A. V., Yashtulov N. A. Development of effective functional materials based on polymer and carbon support with Pt-Pd nanoparticles for renewable energy sources // Int. J. App. Eng. Res. 2018. V. 13. № 24. рр. 16770−16773.

17. Lebedeva M. V., Antropov A. P., Ragutkin A. V., Yashtulov N. A. The electrode materials based on carbon nanotubes and polymer matrix modified with platinum catalysts for chemical power sources // Int. J. App. Eng. Res. 2018. V. 13. № 24. рр. 16774−16777.

18. Yashtulov N. A., Lebedeva M. V., Flid V. R. Katalizatory s nanochasticami palladiya na poristom kremnii dlya avtonomnyh sistem v mikroelektronike // Kinetika i kataliz. 2017. T. 58. № 6. pр. 798−803.

19. Yashtulov N. A., Lebedeva M. V., Ragutkin A. V., Zajcev N. K. Elektrodnye materialy na osnove poristogo kremniya s nanochasticami platiny dlya himicheskih istochnikov toka // ZHurnal prikladnoj himii. 2018. T. 91. Vyp. 2. pр. 232−237.

20. Yashtulov N. A., Patrikeev L. N., Zenchenko V. O., Lebedeva M. V., Zajcev N. K., Flid V. R. Nanokatalizatory palladij-platina-poristyj kremnij dlya toplivnyh elementov s pryamym okisleniem murav'inoj kisloty // Rossijskie nanotekhnologii. 2016. T. 11. № 9-10. pр. 45−50.





УДК 621.3.048.81:621.315.61

E. A. KROTENKO, Ph. D. of Engineering sciences, associate professor

«Omsk State Transport University», Russian Federation, Omsk



Abstract. The object of the study is disc and rod insulators used in railway transport. The operation of insulation of outdoor electrical installations in conditions of pollution and moistening is associated with overlapping of insulators, electrocorrosion of the cores of disc insulators of a direct-current contact network, loss of energy due to leakage currents. When insulators overlap, there are interruptions in power supply, often associated with emergency situations. The purpose of the study is to analyze the replacement circuits of insulator chains, the classification of natural and industrial pollutants of insulators, the conditions for wetting and the development of discharges on the surface. Analysis of methods for preventive testing and measurement of basic electrical characteristics. The proposed measures are aimed at improving the operational reliability of insulators in conditions of pollution and moisture. The tasks of improving the reliability of the insulation in the conditions of pollution and humidification, as well as ensuring the standard service life of the disc insulators of a DC contact network should be solved at the insulation design stage. At the same time, the failure-free operation of the insulation is primarily due to the correct selection of the required level of insulation, and the standard service life of the disk insulators is due to the corresponding design solutions.

Key words: insulators, moistening, pollution, insulator garland, leakage currents, isolation overlap, preventive tests, insulation resistance, breakdown, installation.



1. Kravchenko V. A., Mentyukova A. M., YAkovlev V. N. Proektirovanie i ekspluataciya izolyacii elektroustanovok v usloviyah zagryazneniya atmosfery Tashkent : FAN, 1993. 203 p.

2. Merhalev S. D., Solomonik Е. A. Vybor i ekspluataciya izolyacii v rajonah s zagryaznennoj atmosferoj. Leningrad : Energoatomizdat, 1983. 120 p.

3. Potapov A. D. Ekologiya : uchebnoe posobie dlya str. spec. vuzov. M. : Vysshaya shkola, 2002. 446 p.

4. Konstantinov V. M. Ohrana prirody. M. : Akademiya, 2000. 240 p.

5. Izolyaciya ustanovok vysokogo napryazheniya: uchebnik dlya vuzov / G. S. Kuchinskij, V. Е. Kizevetter, YU. S. Pintal' / Pod obshch. red. G. S. Kuchinskogo. M. : Energoatomizdat, 1987. 368 p.

6. Aleksandrov G. N., Ivanov V. L., Kizevetter V. Е. Elektricheskaya prochnost' naruzhnoj vysokovol'tnoj izolyacii: uchebnik dlya vuzov L. : Energiya, 1969. 240 p.

7. Merhalev S. D., Solomonik Е. A. Izolyaciya linij i podstancij v rajonah zagryaznennoj atmosferoj. Leningrad : Energiya, 1973. 160 p.

8. Chajkina L. P. Tekhnika vysokih napryazhenij: Uchebnik dlya vuzov zh.-d. transporta M. : Marshrut, 2005. 288 p.

9. Serebryakov A. S. Elektrotekhnicheskoe materialovedenie, elektroizolyacionnye materialy: uchebnik dlya vuzov zh.-d. transporta M. : Marshrut, 2005. 256 p.

10. Miheev V. P. Kontaktnye seti i linii elektroperedachi: uchebnik dlya vuzov zh.-d. transporta M. : Marshrut, 2003. 416 p.

11. Instrukciya po bezopasnosti dlya elektromonterov kontaktnoj seti (CE – 761). M., 2003. 21 p.

12. Informacionnye tekhnologii na zheleznodorozhnom transporte: Uchebnik dlya vuzov zh. d. transporta / E. K. Leckij, V. I. Pankratov i dr. M. : UMK MPS Rossii, 2000. 680 p.





УДК 621.3.048.82:621.315.61

A. S. KHISMATULLIN, Ph. D. of Physical Mathematical Sciences, Associate Professor



Branch of Ufa State Oil Technical University, Russian Federation, Salavat


Abstract. Transformers are currently used almost everywhere where there is electricity and where a stable power supply is needed. The main problem of this device is its heating when current passes through the windings. Heat must be released into the environment and for this purpose oils are used to remove heat. The use of SF6 bubbles in oils accelerates the process of heat transfer, which is similar to the transfer of a substance during a chemical reaction. This heat transfer is analyzed on the basis of transcillatory transfer. To determine the transcillatory transfer coefficient, one should find the velocity and temperature fields for periodic fluid motions. For this purpose, the Cauchy problem for temperature difference in a cylindrical coordinate system was considered. In the course of solving the equation, it was found that  a greater value of speed is reached near the surface of the bubble. Perturbation zones due to bubble movement were found and approximate sizes of disturbances were determined. The required sizes of convective cells formed by the movement of bubbles are found. When the chains of bubbles emerge, velocity fields, which are represented as a traveling wave appear, and the horizontal direction of the wave is used to find the transcillatory transfer.

Key words: bubbles heat transfer, transcillatory transfer coefficient, transformer, differential equation, temperature gradient, heat conduction law.



1. Hnykov A. V. Teoriya i raschet transformatorov istochnikov vtorichnogo elektropitaniya. M. : SOLON-Press, 2004.

2. Golunov A. M. Ohlazhdayushchie ustrojstva maslyanyh transformatorov. M. – L. : Energiya, 1964. 152 p.

3. Ignatovich V. M., Simhovich Sh. R. Elektricheskie mashiny i transformatory: uchebnik dlya akademicheskogo bakalavriata. 6-e izd. M. : Yurajt, 2016. 181 p.

4. Hismatullin A. S., Vahitov A. H., Feoktistov A. A. Sistema ohlazhdeniya transformatornogo masla na osnove transcillyatornogo perenosa tepla // Energobezopasnost' i energosberezhenie. 2016. № 4. pp. 43−46.

5. Nigmatulin R. I., Filippov A. I., Hismatullin A. S. Transcillyatornyj perenos tepla v zhidkosti s gazovymi puzyr'kami // Teplofizika i aeromekhanika, 2012. Vol. 19. № 5. pp. 595–612.

6. Zavyalov A. M., Karaseva R. B. Uravneniya matematicheskoj fiziki i priblizhennye metody reshenij differencial'nyh uravnenij: uchebnoe posobie. Omsk : SibADI, 2002. 124 p.

7. Ivanov V. B. Teoriya voln: kurs lekcij. Irkutsk : Irkut. un-t, 2006. 210 p.