THE INTERNATIONAL
TECHNICAL-ECONOMIC
JOURNAL

Contents

PROCESSES AND MACHINES OF AGROENGINEERING SYSTEMS

 

Kopteva N. A., Udintsova N. M.

Use of the predictive apparatus when planning agricultural works

 
7

Andreev O. P., Tambovtsev M. A.

Analysis of software and hardware for the implementation of temperature control systems for refrigeration vehicles

 
15

Pukhov E. V., Sledchenko V. A., Timoshinov M. G., Meshkova S. S.

Mathematical model for determining the level of grain in the combine harvester

 
20

Shmigel’ V. V. , Uglovskiy A. S., Makhaeva N. Y.

Determination of the parameters of electrostatic sensor using MATLAB/Simulink

 
26

Andreev S. A., Matveev A. I.

Electric power supply of measuring-transfer devices in telemetric systems of agricultural appointment

 
34

Vlasyuk I. V., Paramonov S. Yu., Belov S. I.

The influence of reactive power compensation energy saving of agricultural enterprises

 
40

Konoplin N. A., Morozov V. A., Popov A. I.

Analysis of the physical parameters of energy efficiency of engineering systems

 
47

Suvorov M. N., Leshchinskaya T. B.

Strategies for the use of apss and overcoming the uncertainty of initial information by expert assessments

 
54

Varnakov D. V., Karev A. M.

Evaluation of the effectiveness of a technical system in the parameters of its states

 
61

Didmanidze R. N.

Justification of the methods for optimal simulation of production processes

 
66

Fedorov S. k., Lashukov M. A., Gamidov A. G.

Reinforcing electromechanical restoring the seating surfaces of the shafts under the bearings

 
72

 

 

ENERGY

 

Imanayev R. A., Nabiyev T. M., Ryabishina L. A.

Investigation of the spectrum of higher harmonic components in autonomous power supply systems of oil and gas field

 
78

Murataev I. A., Murataeva G. A., Ivanov D. A.

Method of diagnostics of the transformer equipment in the idle mode with the use of computers

 
85

 

 

SAFETY OF HUMAN ACTIVITIES

 

Kvachantiradze E. P., Potapkin E. V., Goldin E. A.

Project methodology the implementation of the laws "Right to work" and "Labour protection" – investment in agriculture

 
91

 

 

ABSTRACTS OF ARTICLES INDEXED IN AGRIS

 

Abstracts

102

 

 

_________________________________________________________________________________________________________________________________ 

 

 

 

PROCESSES AND MACHINES

 

OF AGROENGINEERING SYSTEMS

 

 

 

УДК 621.57.005

O. P. ANDREEV, Ph. D. of Engineering Sciences, Professor

M. A. TAMBOVTSEV, Postgraduate

Federal State Budgetary Educational Institution of Higher Education "Russian State Agrarian University – Moscow Agricultural Academy named after A. K. Timiryazev", Russian Federation, Moscow, Russia

 

ANALYSIS OF SOFTWARE ANd HARDWARE FOR THE IMPLEMENTATION OF TEMPERATURE CONTROL SYSTEMS FOR REFRIGERATION VEHICLES

Abstract. The control of parameters of many technological processes of modern agrarian and industrial complex is carried out with the use of telemetric systems. At the same time, radio communication is widely used to ensure the convenience of control, increase its efficiency and reliability. Radio links are typically used to transfer data from measuring devices to a remote server in which information is stored and processed, and the formation of control commands. When operating radiotelemetric systems, a serious problem is the power supply of measuring and transmitting devices. The use of chemical sources of energy for these purposes is not always justified, since they require periodic maintenance. The possibility of power supply of measuring and radio transmitting devices by dispersed electromagnetic energy of industrial origin is considered in the work. The question is illustrated by an example of a telemetry system serving hydraulic equipment. The purpose of such a system is to measure the current consumption of water from consumers and transfer information to a centralized server. Known technical solutions provided for the direct use of the converted electromagnetic energy of the radiophone to power the transmitting devices. However, with this approach, there is a clear lack of energy. Therefore, the continuous mode of operation of the transmitting devices is proposed to be replaced by a periodic one. At the same time, for a relatively long period of time, the device accumulates energy on the capacitors and its insignificant expense for the operation of a timer and an information storage device. The transmitting device is switched on in pulsed mode, which ensures the transfer of a "compressed" file to the server. To make fuller use of the accumulated energy, it is suggested to switch capacitors at the time of its consumption.

Key words: telemetric system, electromagnetic energy, power of radio transmitting devices, energy storage, capacitors.

 

REFERENCES

1. Aristova N. I., Korneeva A. I. Promyshlennye programmno-apparatnye sredstva na otechestvennom rynke ASUTP. M. : Nauchtekhlitizdat, 2001. 402 s.

2. Itskovich E. L., Solov'ev Yu. A., Murzenko I. V. Opyt ispol'zovaniya otkrytykh SCADA-programm //  Promyshlennye  ASU  i kontrollery.

3. Korneeva A. I., Matveykin V. G., Frolov S. V. Programmno-tekhnicheskie kompleksy, kontrollery i SCADA-sistemy. M. : TsNIITEneftekhim, 1996.  247  s.

4. Korneeva A. I. PTK i SCADA-sistemy na otechestvennom rynke promyshlennoy avtomatizatsii // Promyshlennye ASU i kontrollery. 1999. № 12. S. 15–22.

5. Mazurov V. M., Lityuga A. V., Spitsyn A. B. Razvitie tekhnologiy adaptivnogo upravleniya v Scada sisteme Trace Mode // Pribory i sistemy. Upravlenie, kontrol', diagnostika. 2002. № 1. S. 28–33.

6. Sobolev O. S. Sovremennyy mir SCADA-sistem // Mir komp'yuternoy avtomatizatsii. 1999.  № 3. S. 7–14.

7. Uchebnye materialy [Elektronnyy resurs]. Access mode: http://works.doklad.ru/view/85zzgxS81fI.html.

 

_________________________________________________________________________________________________________________________________

 

 

УДК 631.354.2:519.8 

E. V. PUKHOV, Advanced Doctor in Engineering Sciences, Head of Department

V. A. SLEDCHENKO, Ph. D. Engineering Sciences, Associate professor

M. G. TIMOSHINOV, Postgraduate

S. S. MESHKOVA, Leading engineer

Federal State Budgetary Educational Institution of Higher Professional Education "Voronezh State Agrarian University", Russian Federation, Voronezh

 

MATHEMATICAL MODEL FOR DETERMINING THE LEVEL OF GRAIN IN THE COMBINE HARVESTER

Abstract. The problem of finding an optimal and convenient model of collecting information about the state of congestion of vehicles during harvesting has been and remains relevant in Russia and abroad. The low level of cargo handling culture and lack of necessary control lead to increased wear of parts, which often results in premature failure of transport vehicles. Due to the fact that the car is moving with the load more than permissible, the road surface is subjected to significant and rapid destruction. In addition, the lack of timely weighing, allows unscrupulous drivers to commit fraud on the transported raw materials. Penalties for overload are growing every year. According to the code of administrative offences of the Russian Federation, legal entities will have to pay from one hundred and fifty to five hundred thousand rubles for exceeding the permissible load on the axle of the vehicle, depending on the degree of load. All this entails significant financial losses for the company. Thus, the excess capacity of vehicles, as a consequence, regular equipment failures, the lack of technical ability to determine the fact of exceeding the maximum permissible mass of the transport means in the field, as well as the lack of operational data for quick decision-making in the management of the transportation process indicates the relevance of the research topic. The solution of an important scientific and practical task of improving the operational reliability of transport vehicles, possibly through the formation of an integrated approach to the organization and operational management of the transportation process, based on the data on the weight of the cargo. To date, widespread monitoring systems of transport, with which it became possible to monitor in real time such indicators as: consumption of fuels and lubricants; location, direction and speed of vehicles; time of the beginning and end of agricultural work, etc. Existing hardware systems for the transfer of information about the state of transport by means of GPS and GLONASS, can be supplemented by another option: the regulation of loading, unloading, transportation of goods, as well as the operational definition of the weight of the cargo. This provides more accurate and detailed information about the amount of loaded products directly during the unloading of the combine into the machine. The article describes the optical method of determining the level of grain in the hopper of the combine, taking into account the formation of the bulk surface (slide) of grain.

Key words: mathematical model, combine hopper, grain level in the hopper, weight of cargo, bulk grain surface, optical method for determining the level of grain in the hopper.

 

REFERENCES

1. Adler Yu. P. Planirovanie ehksperimenta pri poiske optimal'nyh reshenij (Planning an experiment when searching for optimal solutions). M. : Nauka, 1976. 279 s.

2. Afifi A., EHjzen S. Statisticheskij analiz: Podhod s ispol'zovaniem EHVM (Statistical Analysis: Computer Approach). M. : Mir, 1982. 488 s.

3. Bikel P., Doksam K. Matematicheskaya statistika (Math statistics). M. : Finansy i statistika, 1983. 278 s.

4. Gambarov G. M. Statisticheskoe modelirovanie i prognozirovanie (Statistical modeling and forecasting). M. : Finansy i statistika, 2000. 340 s.

5. Anderson T. Statisticheskij analiz vremennyh ryadov (Statistical analysis of time series). M. : Mir, 1976. 757 s.

6. Arens H., Lyojter Yu. Mnogomernyj dispersionnyj analiz (Multivariate variance analysis). M. : Finansy i statistika, 1985. 231 s.

7. Gmurman V. E. Teoriya veroyatnostej i matematicheskaya statistika (Theory of Probability and Mathematical Statistics). M. : Vysshaya shkola, 2003. 479 s.

8. Boks Dzh., Dzhenkins G. Analiz vremennyh ryadov. Prognoz i upravlenie (Time series analysis. Forecast and management). M. : Mir, 1974. 406 s.

9. Guld H., Tobochnik Ya. Komp'yuternoe modelirovanie v fizike (Computer modeling in physics). M. : Mir, 1990. 400 s.

10. Degtyarev Yu. I. Metody optimizacii (Optimization methods). M. : Sovetskoye radio, 1980. 272 s.

11. Dubrova T. A. Statisticheskie metody prognozirovaniya (Statistical methods of forecasting). M. : YUNITI-DANA, 2003. 133 s.

12. Drejper N., Smit G. Prikladnoj regressionnyj analiz (Applied regression analysis). M. : Finansy i statistika, 1987. 351 s.

13. Lukashin Yu. P. Adaptivnye metody kratkosrochnogo prognozirovaniya vremennyh ryadov (Adaptive methods of short-term forecasting of time series). M. : Finansy i statistika, 2003. 415 s.

14. Orlov A. I. Prikladnaya statistika (Applied Statistics). M. : Ehkzamen, 2006. 671 s.

15. Heerman D. V. Metody komp'yuternogo ehksperimenta v teoreticheskoj fizike (Methods of computer experiment in theoretical physics). M. : Nauka, 1990. 176 s.

16. Pukhov E. V., Timoshinov M. G. Issledovanie processa kontrolya zagruzki transportnyh mashin s ispol'zovaniem ul'trazvukovyh voln (Investigation of the process of controlling the loading of transport vehicles using ultrasonic waves) // innovacionnye tekhnologii i tekhnicheskie sredstva dlya APK, 2016, s. 105–109.

17. Puhov E. V., Timoshinov M. G. Formirovanie trebovanij k sistemam monitoringa rabochih processov proizvodstva sel'skohozyajstvennyh kul'tur (formation of requirements for monitoring systems of working processes for the production of agricultural crops) // Mezhdunarodnyj tekhnikoehkonomicheskij zhurnal, 2017. №6. s. 84–89.

18. Sovetov B. Ya. Modelirovanie system (Modeling systems). M. : Vysshaya shkola, 1998. 319 s.

 

_________________________________________________________________________________________________________________________________

 

 

УДК 621.319.3 

V. V. SHMIGEL’, Advanced Doctor in Engineering Sciences, Professor

A. S. UGLOVSKIY, Ph. D. of Engineering Sciences, Senior lecturer

N. Y. MAKHAEVA, Postgraduate, Head of the Educational and Methodical Department

Federal State Budgetary Educational Institution of Higher Professional Education "Yaroslavl State Agricultural Academy", Russian Federation,  Yaroslavl

 

DETERMINATION OF THE PARAMETERS OF ELECTROSTATIC SENSOR USING MATLAB/SIMULINK

Abstract. The article analyzes and develops a model of the transfer function of the Laplace electrostatic sensor, which would serve as an excellent basis for its dynamic behavior. Implementation of the electrostatic sensor model is necessary for its simulation studies in the Matlab/Simulink environment. The results of the study of the model, its reaction to the guidance of the electrostatic field and frequency characteristics were presented.

Key words: controller, sensor, equivalent circuit, Bode diagram, sensor sensitivity.

 

REFERENCES

1. Zhang J. Q., Yan Y. On-line continuous measurement of particle size using electrostatic sensors, in Powder Technology, 2003. p. 164–168.

2. Xu C., Wang S., Yan Y. Spatial selectivity of linear electrostatic sensor arrays, in Proceedings of the IEEE Instrumentation and Measurement Technology Conference (I2MTC), 2011.  p. 1–5.

3. Gajewski J. B. Non-intrusive solids charge and mass flow measurements with an electrostatic flow probe // journal of Electrostatics, Vol. 46, 1999, p. 271–284.

4. Gajewski J. B. Continuous non-contact measurement of electric charges of solid particles in pipes of pneumatic transport. I. Physical and mathematical models of a method, in Proceedings of the Industry Applications Society Annual Meeting, Conference Record of the 1989 IEEE, Vol. 2, 1989.  p. 1958–1963.

 

_________________________________________________________________________________________________________________________________

 

 

УДК 631.171.003.13 

N. A. KONOPLIN, Ph. D. of Physicо-Mathematical Sciences, Associate Professor

V. A. MOROZOV, Ph. D. of Physicо-Mathematical Sciences, Associate Professor

A. I. POPOV, Ph. D. of Engineering Sciences, Associate Professor

Federal State Budgetary Educational Institution of Higher Education "Russian State Agrarian University – Moscow Agricultural Academy named after A. K. Timiryazev", Russian Federation, Moscow

 

ANALYSIS OF THE PHYSICAL PARAMETERS OF ENERGY EFFICIENCY OF ENGINEERING SYSTEMS

Abstract. The increasing role of power resources in  dynamically  developing  agrarian sector of economy of the state is shown, the priority task of increase of efficiency of use of energy resources taking into account their economic and ecological component is allocated, interrelations of effective implementation of technological processes in various Agriengineering systems and the physical laws underlying their functioning are defined, the basic physical theory of an assessment of efficiency of technical devices is given, the physical principles of work of the main devices are considered, used in agricultural technological processes of agricultural production. Ways of increase of efficiency of their operation are offered, the role of processes of transformation of energy in work of technical devices is shown, the principles of transformation of energy for the physical processes involved in processing equipment of agri-industrial production are analyzed, application of modern innovative approaches in the organization of the agricultural works increasing efficiency of power expenses in agricultural production is considered. The analysis of application of traditional and alternative energy sources in Agri-engineering systems and various applied tasks of agriculture taking into account their ecological safety and economic efficiency is carried out, the defining role of hydropower is allocated. The analysis of prospects and consequences of   its use is presented, importance of solar energy as natural power base for plant growing    and perspective universal energy carrier for technological processes in agriculture is shown. Possibilities of increase of efficiency of use of energy in agricultural processes and technologies by influence on the physical parameters defining their functioning and structure of the used energy resources are considered.

Key words: agri-engineering, energy efficiency, physical parameters, law of physics, energy sources, fuel, аgriculture.

 

REFERENCES

1. Kapitsa P. L.  Energiya i fizika // Vestnik AN SSSR. 1976. № 1. S. 34–43.

2. Syrykh N. N., Kabdin N. E. Teoreticheskie osnovy ekspluatatsii elektrooborudovaniya : uchebnoe posobie. M. : Agrobiznestsentr, 2007. 516 s.

3. Bezrukikh P. P.  Resursy i effektivnost' ispol'zovaniya vozobnovlyaemykh istochnikov energii v Rossii: uchebnoe posobie / P. P. Bezrukikh, Yu. d. Arbuzov, G. A. Borisov, V. I. Vissarionov, V. M. Evdokimov / pod red. P. P. Bezrukikh. SPb. : Nauka, 2002. 314 s.

4. Kochetkov M. N., Ovchinnikov E. V., Rodionov A. V.  Ispol'zovanie rapsovogo masla v kachestve motornogo topliva // Innovatsii v sel'skom khozyaystve. 2017. № 4 (25). S. 266–268.

5. Blinova L. A. Biogazovye ustanovki kak al'ternativnyy istochnik energii v APK RF // Problemy sovremennoy ekonomiki: materialy II Mezhdunar. nauch. konf. (g. Chelyabinsk, oktyabr' 2012 g.). Chelyabinsk: dva komsomol'tsa, 2012. S.  41–44.

6. Timofeev E. V.  Povyshenie energoeffektivnosti v sel'skom khozyaystve /  E. V.  Timofeev, A. F.  Erk, V. N. Sudachenko, V. A. Razmuk // Molodoy uchenyy. 2017. № 4. S. 213–217.

7. Gordeev  A. S.  Energosberezhenie v sel'skom  khozyaystve : uchebnoe posobie /  A. S. Gordeev, D. D. Ogorodnikov, I. V. Yudaev. M. : Lan', 2014. 400 s.

8. Zaginaylov V. I. Puti snizheniya energoemkosti proizvodstva sel'skokhozyaystvennoy  produktsii / V. I. Zaginaylov, A. V. Eshchin, A. I. Popov, N. A. Stushkina // doklady Timiryazevskoy sel'skokhozyaystvennoy akademii: 2016. Vyp. 289. Ch. III. S.  278–280.

 

_________________________________________________________________________________________________________________________________

 

 

УДК 631.371:621.31 

M. N. SUVOROV,  Postgraduate

T. B. LESHCHINSKAYA, Advanced Doctor of Engineering Sciences, Professor

Federal State Budgetary Educational Institution of Higher Education "Russian State Agrarian University – Moscow Agricultural Academy named after A. K. Timiryazev", Russian Federation, Moscow

 

STRATEGIES FOR THE USE OF APSS AND OVERCOMING THE UNCERTAINTY OF INITIAL INFORMATION BY EXPERT ASSESSMENTS

Abstract. In the article conclusions of the use of gas turbine, gas piston plants and microturbines, based on existing schemes of electricity supply to agricultural consumers are drawn. The range of the remoteness of the agricultural consumer from the feeding center of the electric network company is determined, for which it is expediently to consider the use    of an autonomous source of electricity supply on natural gas. Eight strategies of the use of autonomous power sources (gas piston units, microturbines) for consumer power supply in a remote gasified settlement are presented. The question of uncertainty of initial information about the consumer load (can both increase and decrease), which complicates the choice of a better strategy, is indicated. The most probable method for uncovering uncertainty is a method based on the theory of fuzzy sets, using expert estimates of the states of the mediumload. If we consider the set of probable values of the maximum loads for an autonomous power supply as a fuzzy set of loads S, then the degree of belonging of a particular load    value to the set S can be estimated by the membership function taking different values. The specific values of depend on subjective expert judgment. The collection and analysis of expert opinions (assessments) is the research task of the decision-maker. The results of processing a collective expert survey among employees of one of the Moscow electric network companies, and a methodology for their further use for choosing of a power supply scheme with an autonomous power source in a remote gasified settlement are presented in the article.

Key words: autonomous power supply source, strategy, experts, fuzzy set theory, membership function.

 

REFERENCES

1. Elektroenergetika Rossii 2030: Tselevoe videnie / pod red. B. F. Vaynzikhera. M. : Al'pina Biznes Buks, 2008. 352 s.

2. Vlasenko E. A., Suleymanov R. A., Khamula A. A.  Avtonomnaya elektroenergetika sel'skogo khozyaystva: sostoyanie i perspektivy // Polzunovskiy vestnik. 2011. № 2/1. S. 9–13.

3. Gorodov R. V., Gubin V. E., Matveev A. S.  Netraditsionnye i vozobnovlyaemye istochniki energii. Tomsk : Izd-vo Tomskogo politekhnicheskogo universiteta, 2009. 294 s.

4. Platonov A. S., Pikhletskiy V. V.  Otsenka effektivnosti raboty mini-TETs na baze gazoporshnevykh ustanovok // Seriya Estestvennye i tekhnicheskie nauki. 2013. № 11-12. Rezhim dostupa. URL: http://www.nauteh-journal.ru (data obrashcheniya 03.02.2018).

5. Leshchinskaya T. B.  Optimizatsiya struktur i parametrov sistem elektrosnabzheniya M. : NIU MEI, 2013. 90 s.

6. Konysheva L. K., Nazarov D. M.  Osnovy teorii nechetkikh mnozhestv : Uchebnoe posobie. SPb. : Piter, 2011. 192 s.

 

_________________________________________________________________________________________________________________________________

 

 

УДК 631.173.2.003.13 

D. V. VARNAKOV, Advanced Doctor in Engineering Sciences, Professor

Federal State Budgetary Educational Institution of Higher Education "Ulyanovsk State University", Russian  Federation, Ulyanovsk

A. M. KAREV, Ph. D. of Engineering Sciences, Associate Professor

Federal state Budgetary Educational Institution of Higher Education "Russian State Agrarian University – Moscow Agricultural Academy named after A. K. Timiryazev", Russian Federation, Moscow

 

EVALUATION OF THE EFFECTIVENESS OF A TECHNICAL SYSTEM IN THE PARAMETERS OF ITS STATES

Abstract. The method of estimation of reliability of technical systems on parameters of its States having probabilistic characteristics is considered. Efficiency evaluation is made on the basis of mathematical expectation of states system.

Key words: reliability, efficiency, mathematical expectation of technical system states.

 

REFERENCES

1. Varnakov D. V. Ispol'zovanie diagnosticheskikh parametrov pri otsenke i prognozirovanii parametricheskoy nadezhnosti dvigateley avtotransportnykh sredstv: Monografiya. Ul'yanovsk : UlGU, 2013. 124 s.

2. Belyaev Yu. K., Bogatyrev V. A., Bolotin V. V. Nadezhnost' tekhnicheskikh sistem: spravochnik. M. : Soyuzpolittipografiya. 1984. 659 s.

3. Didmanidze O. N. Obespechenie nadezhnosti tekhniki putem provedeniya kompleksnoy otsenki kachestva postavok zapasnykh chastey pri organizatsii tekhnicheskogo servisa / O. N. Didmanidze, B. S. Didmanidze, V. V. Varnakov, D. V. Varnakov, E. A. Varnakova, L. L. Khabieva // Mezhdunarodnyy tekhniko-ekonomicheskiy zhurnal. 2014. № 5. S. 31–40.

4. Nadezhnost' i effektivnost' v tekhnike. Spravochnik / pod red. V. I. Kuznetsova [i dr.]. M. : Mashinostroenie, 1990. 320 s.

5. Shishonok N. A., Repkin V. F., Barvinskiy L. L. Osnovy teorii nadezhnosti i ekspluatatsii radioelektronnoy tekhniki. M. : Sovetskoe radio, 1964.  551  s.

6. Varnakov V. V.  Postroenie matematicheskoy modeli tekhnicheskogo servisa / V. V. Varnakov, A. S. Karpov, M. E. Dezhatkin // Mezhdunarodnyy tekhniko-ekonomicheskiy zhurnal. 2009. № 3. S. 73–75.

7. Varnakov D. V.  Vliyanie metoda prognozirovaniya dostatochnoy nadezhnosti po obobshchennomu parametru na dinamicheskuyu kharakteristiku avtotransportnykh sredstv // Mezhdunarodnyy tekhniko-ekonomicheskiy zhurnal. 2012. № 2. S. 113–119.

8. Didmanidze O. N., Varnakov D. V. Povyshenie parametricheskoy nadezhnosti avtomobil'nykh dvigateley // Remont, vosstanovlenie, modernizatsiya. 2007. № 5. S. 2–7.

9. Varnakov V. V., Pogodin A. V., Varnakov D. V. Otsenka kachestva remonta dvigateley pri sertifikatsii po rezul'tatam obkatochnykh ispytaniy // Remont, vosstanovlenie, modernizatsiya. 2005. № 8. S. 19–21.

10. Didmanidze O. N., Varnakov D. V. Prognozirovanie parametricheskoy nadezhnosti dvigateley avtotransportnykh sredstv v normal'nom i spetsial'nom ekspluatatsionnykh rezhimakh // Mezhdunarodnyy tekhniko-ekonomicheskiy zhurnal. 2013. № 3. S. 94–98.

11. Varnakov V. V., Varnakov D. V. Matematicheskaya formulirovka usloviy i reshenie zadachi otsenki organizatsionno-tekhnicheskogo urovnya predpriyatiya tekhnicheskogo servisa // Mezhdunarodnyy tekhniko-ekonomicheskiy zhurnal. 2013. № 4. S. 80–84.

12. Varnakov V. V., Dezhatkin M. E., Varnakov D. V. Kompleksnaya otsenka kachestva postavok zapasnykh chastey pri organizatsii tekhnicheskogo servisa // Vestnik Ul'yanovskoy gosudarstvennoy sel'skokhozyaystvennoy akademii. 2013. № 1. S. 132–139.

13. Didmanidze O. N., Varnakov D. V. Rezul'taty razrabotki metoda i sistemy operativnogo kontrolya i prognozirovaniya parametricheskoy nadezhnosti v spetsial'nykh ekspluatatsionnykh rezhimakh // Mezhdunarodnyy tekhniko-ekonomicheskiy zhurnal. 2013. № 4. S. 71–79.

14. Varnakov V. V., Dezhatkin M. E., Varnakov D. V. Teoreticheskoe obosnovanie primeneniya metoda otsenki kachestva komplektuyushchikh (FMEA) na osnove ustanovleniya granits dopustimogo riska //  Mezhdunarodnyy nauchnyy zhurnal. 2012. № 5. S. 88–91.

 

_________________________________________________________________________________________________________________________________

 

 

УДК 631.152:004.3 

R. N. DIDMANIDZE, Ph. D. of Economic Sciences, Associate Professor

Federal State Budgetary Educational Institution of Higher Education "Russian State Agrarian University – Moscow Agricultural Academy named after A. K. Timiryazev", Russian Federation, Moscow

 

JUSTIFICATION OF THE METHODS FOR OPTIMAL SIMULATION OF PRODUCTION PROCESSES

Abstract. The article deals with theoretical and practical issues of modeling of production processes by modern scientific methods. The practical value of the considered issues is confirmed by the fact that in modern market conditions mathematical optimization methods, which, along with other methods, allow to determine the dependence of the optimization parameters on various factors, to predict the processes under consideration, to find and make management decisions, are of great  importance.

Key words: production processes, modeling, Monte Carlo simulation, and the harvestingtransport complex, the organization of the process, rationale, and external factors, criteria of optimality, parallel process organization.

 

REFERENCES

1. Akulich I. L. Matematicheskoe programmirovanie v primerah i zadachah. M. : Vysshaya shkola, 1993. 336 s.

2. Buslenko N. P.  Modelirovanie slozhnyh sistem. M. : Nauka, 1978. 400  s.

3. Ventcel' E. S., Ovcharov L. A. Teoriya sluchajnyh processov i ee inzhenernye prilozheniya. M. : Vysshaya shkola, 2000. 384 s.

4. Ventcel' E. S. Ispol'zovanie operacij: zadachi, principy, metodologiya. M. : Gl. red. fiz.-mat. lit., 1988. 208 s.

5. Daffin R., Piterson Eh., Zener K. Geometricheskoe programmirovanie. Per. s angl. M. : Mir,  1972. 312 s.

6. Evtyushenkov N. E. Razrabotka racional'nyh  transportno-tekhnologicheskih  processov  //  Tekhnika v sel'skom hozyajstve. 1991. № 5. S. 10–14.

7. Zangiev A. A., Didmanidze O. N., Ivolgin V. S. Optimizaciya proizvodstvennyh processov v plodovo-yagodnyh pitomnikah. M. : Informagrotekh, 1996. 124 s.

8. Lukinskij V. S., Zajcev E. I.  Prognozirovanie nadezhnosti avtomobilej. L. : Politekhnika, 1991. 224 s.

9. Saati T. L. Matematicheskie metody issledovaniya operacij. M. : Sovetskoe radio, 1972. 223 s.

10. Skorohodov A. N., Levshin A. G. Vybor optimal'nyh parametrov i rezhimov raboty MTA: Praktikum. Ch. 1. M. : OOO «UMC «Triada», 2012. 75 s.

 

_________________________________________________________________________________________________________________________________

 

 

УДК 631.3–233.1.004.67

S. K. FEDOROV, Advansed Doctor in Engineering Sciences, Professor

M. A. LASHUKOV, Postgraduate

Federal State Budgetary Educational Institution of Higher Professional Education "Moscow State Technical University named after N. E. Bauman (National Research University), Russian Federation, Moscow

A. G. GAMIDOV, Ph.D. Engineering Sciences, Associal Professor

Federal State Budgetary Educational Institution of Higher Education "Russian State Agrarian University – Moscow Agricultural Academy named after A. K. Timiryazev", Russian Federation, Moscow


REINFORCING ELECTROMECHANICAL RESTORING THE SEATING SURFACES OF THE SHAFTS UNDER THE BEARINGS

Abstract. In the conditions of increasing tension of work of equipment, increase of its power and speed of movement, and also in connection with arrival on the Russian market of expensive foreign tractors, combines and agricultural machines the problem of improvement of quality of their production and repair becomes more and more actual. Low reliability of machines is associated with low quality of manufacturing and restoration of the most critical surfaces of parts, and above all, the landing surfaces of the shafts under the rolling bearings. The existing methods of restoration of the landing surfaces of the shafts under the rolling bearings by welding, surfacing, spraying, installation of an additional part, replacement of the part, the use of polymeric materials are time-consuming and do not provide the required hardness of the surface layer of the parts. All of the above methods are based on the use of additional material, pre-and final cutting, regardless of the wear of the shaft surfaces. This work substantiates  the use of a reinforcing Electromechanical restore the Seating surfaces of the shafts under the bearings c worn to 0.075 mm due to the increase in diameter of the worn-out and hardening of the surface layer details during the contact tempering of structural steels. The results of the research are confirmed experimentally with strengthening Electromechanical restoration of the landing surfaces of the shafts under the rolling bearings on the shafts of pumps, gearboxes of cars, power reducers.

Key words: rolling bearings, shafts, restoration, hardening, electromechanical processing.

 

REFRENCES

1. Yerokhin M. N. Tekhnicheskiye i tekhnologicheskiye trebovaniya k perspektivnoy sel’skokhozyaystvennoy tekhnike [Technical and technological requirements for advanced agricultural machinery]. M. : FGBNU "Rosinformagrotekh|", 2011, 248 s. (In Rus.).

2. Gadjiev A. A. Technological maintenance of durability of bearing units of machines using polymeric materials: avtoref. dis. doctor of techn. sciences: 05.20.03 / Gadjiev Aliashab Alievich. M. : MSAU, 2006. 36 s.

3. Kononenko A. C., Kuznechov I. A. Vosstanovlenie posadochnich mest pod podshipniki kacheniya i korpusnych detalex mashin polimernimi nanokompozitami. Trudu GOSNITI. 2016. Tom 124 (2), S. 81–85. (In Rus.).

4. Fedorova L. V., Fedorov S. K., Ivanova Y. S., Lompas A. M. Tekhnicheskiye osnovu povusheniya iznosostoikosti detalei electromechanical poverchnostnou zakalkou. Izvestuya vushux ychebnux zavedeniu. Mashinostroenie. 2017. № 9, (690). S. 85–92. (In Rus.).

5. Fedorova L. V., Fedorov S. K., Serzhant A. A., Golovin V. V., Systerov S. V. Electromechanical surface hardening of tubing steels //  Metal Science and Heat Treatment. 2017.  P. 1–3.

6. Fedorov S. K., Fedorova L. V.,  Ivanova Y. S., Voronina M. V.  Increase of Wear Resistance of the drill Pipe Thread Connection by Electromechanical Surface Hardening // International journal of Applied Engineering Research. ISSN 0973-4562. Volume 12, Number 18 (2017). P. 7485–7489 © Research  India Publications.

 

_________________________________________________________________________________________________________________________________

 

 

 

ENERGY

 

 

 

УДК 621.31:665

R. A. IMANAYEV, Postgraduate

T. M. NABIYEV, Postgraduate

L. A. RYABISHINA, Associate Professor

Federal State Budgetary Educational Institution of Higher Education "Ufa State Oil Technical University", Russian Federation, Ufa

 

INVESTIGATION OF THE SPECTRUM OF HIGHER HARMONIC COMPONENTS IN AUTONOMOUS POWER SUPPLY SYSTEMS OF OIL AND GAS FIELD

Abstract. The article presents the results of the study of the level of higher harmonic components in the Autonomous power supply system of the oil and gas field. For these power supply systems, the issue of electromagnetic compatibility is relevant, since the power of consumers generating higher harmonics is commensurate with the power of the power supply system. The object of the study was the Autonomous system of power supply of the oil and gas field. The harmonic composition of the connection currents at four substations 110/10 and the coefficient of distortion of sinusoidality, as well as active and reactive power and power factor were monitored during the examination of the quality of electricity. According to the analysis and calculation of the higher harmonic components of the current and voltage of the Autonomous oil and gas field, the following measures were recommended to reduce the influence of higher harmonics. The first method of improving the harmonic composition includes measures to reduce the impedance of the network from the source of higher harmonics to the windings of generators. A strong impact on the reduction of higher harmonics, has an increase in the number of operating generators, with the same amount of power produced. When you increase the number of the generators of the content ratio of the 5th harmonic voltage on the buses of 10 kV of power plant is reduced. The total harmonic content of 5, 7 and 11 is also reduced. The next method is the commissioning of the second stage, in which the generators of another type of higher power will be installed, with less internal resistance, which will favorably affect the reduction of the impact of higher harmonics. The third method includes filtration measures of higher harmonics at the output of frequency converters.

Key words: autonomous system, oil and gas field, higher harmonics, electromagnetic compatibility, voltage unbalance factor, harmonic composition, power converters.

 

REFERENCES

1. Kartashev I. I., Tul'skij V. N. Upravlenie kachestvom ehlektroehnergii. M. : Izdatel'skij dom MEHI, 2006. S. 122-134.

2. Harlov N. N. Tekhnicheskij otchet. Ispytanie, diagnostika i razrabotka meropriyatij po normalizacii parametrov ehlektroseti Bovanenkovskogo NGKM. Tomsk, 2014. S. 23.

3. GOST 32144-2013 Normy kachestva ehlektricheskoj ehnergii v sistemah ehlektrosnabzheniya obshchego naznacheniya. M. : Izdatel'stvo standartov, 2013. S.7.

4. Zhelezko Yu. S. Poteri ehlektroehnergii. Reaktivnaya moshchnost'. Kachestvo ehlektroehnergii. Rukovodstvo dlya prakticheskih raschetov. M. : EHNAS, 2009.

5. Zhezhelenko  I. V.  Vysshie garmoniki v sistemah ehlektrosnabzheniya prompredpriyatij. 4-e izd. M. : Ehnergoatomizdat, 2000. S. 223-331.

6. Kudryashev G. S., Seleznyov A. S., Fedosov D. S. Vyyavlenie istochnikov iskazheniya formy krivoj napryazheniya v ehlektroehnergeticheskih sistemah // Mashinostroenie: setevoj ehlektronnyj nauchnyj zhurnal. 2014. № 3. T.2. S. 59-65 [Ehlektronnyj resurs]. URL: http://www.industengiring.ru/issues.pdf (data obrashcheniya 29.01.2018).

7. Fedosov D. S., Vandam Zh. K., Voroncov D. V. Issledovanie rezonansnyh yavlenij na vysshih garmonikah v skheme vneshnego ehlektrosnabzheniya nelinejnoj nagruzki //  Vestnik IGTU. 2016. S. 145–154.

8. Zyryanov V. M., Mitrofanov N. A., Sokolovskij Yu. B. Analiz garmonicheskogo sostava toka i napryazheniya na shinah 0,4 kV KTPN i primenenie ustrojstv ogranicheniya vysshih garmonik // Vestnik IGTU. 2016. S. 61–68.

9. Shklyarskij Ya. Eh., Skam'in A. N. Problemy vysshih garmonik v setyah promyshlennyh predpriyatij. M. : Ehlektrotekhnika, 2015. S. 69-71.

10. Elinov D. A., Biryukova O. V., Chernecov M. V. Vliyanie vysshih garmonik pri izmeneniyah chastoty v ehlektricheskih setyah // Modeli, sistemy, seti v ehkonomike, tekhnike, prirode i obshchestve. 2015. S. 158-164.

 

_________________________________________________________________________________________________________________________________

 

 

УДК 621.31

I. A. MURATAEV, Ph.D. of Engineering Sciences, Associate Professor

G. A. MURATAEVA, Ph.D. of Engineering Sciences, Associate Professor

D. A. IVANOV, Ph.D. of Engineering Sciences, Associate Professor

Department of Industrial electronics and light engineering, Kazan State Power Engineering University


METHOD OF DIAGNOSTICS OF THE TRANSFORMER EQUIPMENT IN THE IDLE MODE WITH THE USE OF COMPUTERS

Abstract. The method of diagnostics of power transformers on parameters of losses on hysteresis and eddy currents is offered. An analytical expression that describes the dependence of the total loss of active power in steel at different stresses is presented. The method of artificial magnetization of the magnetic circuit to increase the sensitivity of diagnosis is considered. Magnetization with a constant current equal to the idle current of the transformer, it is possible to transfer the core to the saturation mode, i.e. the mode of asymmetric magnetization. The procedure  for  measuring  the  volt-watt characteristics of the transformer at different magnetizing currents of the magnetic circuit by a constant current from an external source is described. Practical measurements on the transformer  with simulation of the artificial defect of damage to the inter-sheet insulation of the magnetic core by removing the lacquer layer of the steel sheets of the magnetic core were carried out. The dependences of changes in diagnostic parameters at different magnetization currents for the normal and defective state of the transformer are presented. It is found that damage to the inter-sheet insulation leads to an increase in losses on eddy currents, which displace the magnetic flux into the intact part of the magnetic circuit and causes a decrease in losses on hysteresis. With the increase in the DC magnetization of the transformer, a decrease in losses on eddy currents is observed, but the redistribution of the magnetic field in the section of the magnetic circuit causes an increase in the component of losses on the hysteresis. The software for automation of the procedure of volt-watt characteristics measurement and determination of diagnostic parameters is developed. The functional capabilities of the software are described.

Key words: transformer electrical equipment, diagnostics, no-load losses, volt-wad characteristics, section of magnetic core, magnetization.

 

REFRENCES

1. Alekseev B. A. Kontrol' sostoyaniya (diagnostika) krupnyh silovyh transformatorov. M. : NC EHNAS, 2002. S. 97-98.

2. Gervic V. N. Metodika diagnostiki usiliya pressovki obmotok transformatora / M. N. Gervic, V. N. Osotov, L. S. Petrishchev [i dr. ] // Ehlektricheskie stancii. 1997. № 5. S. 58-60.

3. Lachman M. F. Diagnostika transformatora posredstvom analiza toka namagnichivaniya // IEEE Trans. on Power deliv. 1994. V. 9. № 3. S. 1466–1475.

4. Ashryatov A. K. Izmerenie poter' holostogo hoda silovyh transformatorov // Ehlektricheskie stancii. 1948. № 5. S. 34-36.

5. Pat. 2374656 Rossijskaya Federaciya, MPK G 01 R 32/02. Sposob formirovaniya diagnosticheskogo parametra pri ispytaniyah ehlektromagnitnyh preobrazovatelej ehnergii /  Kozlov V. K., Murataev I. A., Murataeva G. A. ; zayavitel' i patentoobladatel' Kozlov V. K., Murataev I. A., Murataeva G. A. № 2008105389/09 ; opubl. 27.11.2009, Byul. № 33.

6. Pat. 2354982 Rossijskaya Federaciya, MPK G 01 R 31/02/ Sposob diagnostiki magnitnoj sistemy transformatora / Murataev I. A., Murataeva G. A. ; zayavitel' i patentoobladatel' Murataev I. A., Murataeva G. A. № 2007128240/28 ; opubl. 10.05.2009, Byul. № 13.

7. Starodubcev Yu. N. Magnitnye poteri na vihrevye toki pri postoyannom podmagnichivanii // Ehlektrichestvo. 1979. № 9. S. 75-76.

8. Podgornyj Eh. V., Hlebnikov S. D. Modelirovanie i raschet perekhodnyh rezhimov v cepyah relejnoj zashchity /  Pod red. A. D. Drozdova. M. : Ehnergiya, 1974. 206 s.

9. Yanase S., Okazaki Y., Asano T. AC magnetic properties of electrical steel core under DC biased magnetization // J. Mag. Mater. 2000. V. 215-216. S. 156-158.

10. Rukovodstvo pol'zovatelya [Ehlektronnyj   resurs]. Rezhim   dostupa: http://www.lcard.ru/download/e-502_user_guide.pdf (data obrashcheniya: 14.05.2018).

11. Prihod'ko V. M., Kravchenko V. I., Prihod'ko A. M. Perenosnyj universal'nyj tiristornyj preobrazovatel' s perestraivaemoj strukturoj //  Promyshlennaya ehnergetika. 1999. № 4. S. 30-35.

 

_________________________________________________________________________________________________________________________________

 

 

 

SAFETY OF HUMAN ACTIVITIES

 

 

 

УДК 331.45.001.13

E. P. KVACHANTIRADZE, Ph.D. of Biological Sciences, Professor

E. V. POTAPKIN, student

E. A. GOLDIN, student

Federal State Budget Educational Institution of Higher Education "Russian State Agrarian University – Moscow Agricultural Academy named after K.A. Timiryazev", Russian Federation, Moscow

 

PROJECT METHODOLOGY THE IMPLEMENTATION OF THE LAWS "RIGHT TO WORK" AND "LABOUR PROTECTION" – INVESTMENT IN AGRICULTURE

Abstract. The laws "Right to work" and "Protection of work" reflect the system of relations between the state and the individual. At the same time, the state does not assume the obligation to employ a person, but provides guarantees in the proper protection of the rights of citizens in the process of work.This approach only reinforces the social problems of Russia that have arisen after the country's transition to the capitalist path of development. There is labor and labor migration, increasing in the global warming on the planet.The authors propose a project to develop a methodology for "Assessing the implementation of the laws "Right to work" and "labor Protection" in changing climatic conditions." The project includes two stages of research: the study of the practical implementation of the law"Right to work" in a changing climate and the study of changes in the content and nature of work in global warming on the example of the Arkhangelsk region. The methodology should provide a response on the possibility of implementing the law "Right to work", and in case of a positive response, indicate how to implement this law and ensure the implementation of the law "labor Protection". The package of documents "Assessment of the implementation of the laws "Right to work" and "labor Protection" in changing climatic conditions" should be the basis for setting priorities in the calculation of investments in agricultural production of a new generation.

Key words: assessment methodology, "Right to work", "labor Protection", global warming, investments in agriculture, Arkhangelsk region.

 

REFERENCES

1. Konstituciya RF, st. 37 [Elektronnyj resurs]. Rezhim dostupa: http://ruleconsult.ru/grazhdanskoe/trudovoe/pravo-na-trud-konstituciya-r

2. Konstituciya RF, st. 139–142, 143–159 [Elektronnyj resurs]. Rezhim dostupa: https://studfiles.net/preview/652144/page:3

3. Federal'naya programma sodejstviya zanyatosti naseleniya Rossijskoj Federacii na 1994 god, utv. Postanovleniem Pravitel'stva RF ot 15 iyunya 1994 g. // SZ RF. 1994. № 13. St. 1517. SZ RF. 1996. № 17. St. 1915.

4. Federal'naya celevaya programma sodejstviya zanyatosti naseleniya Rossijskoj Federacii na 1998– 2000 gody // SZ RF. 1998. № 33. St. 4005.

5. Kvachantiradze Eh. P., Korshikov D. Yu. Faktory, formiruyushchie pozharoopasnye situacii na torfyanyh bolotah // Mezhdunarodnyj tekhniko-ehkonomicheskij zhurnal. 2016. № 2. S. 92–104.

6. Kvachantiradze Eh. P., Korshikov D. Yu. Usloviya pererozhdeniya torfa v goryuchee veshchestvo-polukoks / V sb.: Geografiya: razvitie nauki i obrazovaniya: Kollektivnaya monografiya po materialam Mezhdunarodnoj nauchno-prakticheskoj konferencii LXIX Gercenovskie chteniya, posvyashchennoj 115-letiyu so dnya rozhdeniya Stanislava Vikent'evicha Kalesnika. Otv. red.: V. P. Solomin, V. A. Rumyancev, D. A. Subetto, N. V. Lovelius. 2016. S. 141–146

7. Kvachantiradze Eh. P., Bykova E. K. Klimaticheskie izmeneniya HKH veka kak vozmozhnyj faktor usyhaniya eli sibirskoj v arhangel'skoj oblasti / V sb.: Geografiya: razvitie nauki i obrazovaniya: kollektivnaya monografiya po materialam Mezhdunarodnoj nauchno-prakticheskoj konferencii, posvyashchennoj godu ehkologii v Rossii, 220-letiyu Gercenovskogo universiteta, 85-letiyu fakul'teta geografii, 145-letiyu so dnya rozhdeniya professora Vladimira Petrovicha Budanova. 2017. S. 150–156.

8. Sel'skoe hozyajstvo Arhangel'skoj oblasti [Elektronnyj resurs]. Rezhim dostupa: http://ab-centre.ru/page/selskoe-hozyaystvo-arhangelskoy-oblasti

9. Federal'naya sluzhba po gidrometeorologiii i monitoringu okruzhayushchej sredy [Elektronnyj resurs]. Rezhim dostupa: http://meteo.ru/

10. Modelirovanie demograficheskih processov Rossii. Metod analiza ierarhij [Elektronnyj resurs]. Rezhim dostupa: https://cyberleninka.ru/article/v/statisticheskoe-issledovanie-estestvennogo-imigratsionnogo-dvizheniya-naseleniya-trudosposobnogo-vozrasta-rossii

11. Vereshchak E. G. Statisticheskoe issledovanie demograficheskoj situacii v Arhangel'skoj oblasti: avtoref. dis. kand. ehkon. nauk / Vereshchak Elena Gennad'evna. M., 2011. 23 s.

12. Rossiyan prizvali vstrechat' ogromnuyu volnu migrantov [Elektronnyj resurs]. Rezhim dostupa: https://lenta.ru/news/2018/03/07/migration/ (12:36, 7 marta 20180).

13. Kvachantiradze Eh. P. Vvedenie v agrometeorologicheskuyu praktiku ponyatij «teplosoderzhanie vozduha», «teplosoderzhanie i vlagosoderzhanie pochvy» // Mezhdunarodnyj tekhniko-ehkonomicheskij zhurnal. 2017. № 2. S. 146–147.

 

_________________________________________________________________________________________________________________________________

 

 

 

ABSTRACTS OF ARTICLES INDEXED IN AGRIS

 

 

 

N. A. KOPTEVA, Advanced Doctor in Engineering Sciences, Professor

N. M. UDINTSOVA, Ph.D. of Engineering Sciences, Associate Professor

Azov-Black Sea Engineering Institute

Federal State Budgetary Establishment of Higher Education «Don State Agrarian University», Russian Federation, Zernograd

 

USE OF THE PREdICTIVE APPARATUS WHEN PLANNING AGRICULTURAL WORKS

The article presents the prognostic apparatus developed by the authors for determining the peak loads of agricultural machinery. Based on statistical information about the weather and climatic conditions of a particular area this method allows to calculate in advance the phase of ripening of crops and to find the best option for loading agricultural machinery. The existing methods of calculation of economic and operational indicators are time-consuming and not operational, use the average data, poorly take into account the individual characteristics of the objects of operation. The analysis of meteorological and agrotechnical data of the Rostov region is carried out which makes it possible to determine the periods of possible matches of field works and the associated peaks of loading of technical means. At confidence probability P = 0.9 and the accuracy of the estimates t = 1.7 according to the statistics of the calculated amount of spacing for different crops. Analysis of vegetation conditions for 19 years showed that the duration of the period of ripening of crops depends only on temperature and does not depend on soil moisture. Using the forecast temperature you can finally clarify the duration of the ripening period of crops, the date of the beginning of harvesting and associated intense period of transport operations. The obtained multiple regression equations are the basis of the prognostic apparatus, allow to determine the beginning of harvesting in advance (18-24 days for different crops) with an accuracy of 1.5-3 days suitable for operational planning of technological operations. The proposed method which takes into account the diversity of zonal features and conditions of their manifestations, is suitable for operational planning of all types of agricultural operations. In the case of additional equipment to reduce the risk of a failure to attract technology and related unnecessary costs to a minimum.

 

 

 

S. A. ANDREEV, Ph. D. of Engineering Sciences, Associate Professor

A. I. MATVEEV, Postgraduate

Federal State Budgetary Educational Institution of Higher Professional Education "Russian State Agrarian University – Moscow Agricultural Academy named after K. A. Timiryazev", Russian Federation, Moscow

 

ELECTRIC POWER SUPPLY OF MEASURING-TRANSFER DEVICES IN TELEMETRIC SYSTEMS OF AGRICULTURAL APPOINTMENT

Control of parameters of many technological processes of the modern agri-industrial complex is carried out with the use of telemetric systems. At the same time in order to ensure the convenience of control improve its efficiency and reliability, radio communication is widely used. Radio communication lines are usually used to transmit data from measuring devices to a remote server where information is accumulated and processed as well as to form control commands. When operating radio telemetry systems, a serious problem is the power supply of measuring and transmitting devices. The use of chemical energy sources for these purposes is not always justified, as they require periodic maintenance. Therefore, the authors consider the possibility of power supply of measuring and radio transmitting devices with scattered electromagnetic energy of industrial origin. Modern methods of Autonomous power supply of radio-electronic equipment are analyzed. An example of a telemetric system serving hydraulic equipment is presented. The main task of such a system is to measure the current water consumption of consumers and transfer information to a centralized server. The known technical solutions provided for the direct use of the converted electromagnetic energy of the radiophone to power the transmitting devices. However, this approach has a clear lack of energy. Therefore, it is proposed to replace the continuous mode of operation of transmitting devices with a periodic one. In this case, for a relatively long period of time in the device there is an accumulation of energy on the capacitors and its low consumption for the operation of the timer and the information storage device. The transmitting device is switched on in a pulse mode, which ensures the transfer of the" compressed " file to the server. It is proposed to carry out the accumulation of electric energy by means of capacitors switched during the charge-discharge by a contactless switching device. 

 

 

 

I. V. VLASYUK, Postgraduate student

S. Yu. PARAMONOV, Undergraduate

S. I. BELOV, Ph. D. Of Engineering, Associate Professor, Scientific Adviser

Institute of mechanics and power named after V. P. Goryachkin

Federal State budgetary Educational Institution of Higher Professional Education "Russian State Agrarian University – Moscow Agricultural Academy named after K. A. Timiryazev", Russian Federation, Moscow

 

THE INFLUENCE OF REACTIVE POWER COMPENSATION THE ENERGY EFFICIENCY OF AGRICULTURAL ENTERPRISES

Against the background of the General power consumption there is a trend of sustainable growth in the use of electricity not only in the communal sector of the village, but also in the production facilities of the agri-industrial complex of the country taking into account the state programs for the development of agriculture and, as a consequence, the formation of large complexes of agricultural production. The relevance of saving energy in agriculture and the question of compensation of reactive power is considered. A review of the problem of compensation of reactive power in Russia and the former USSR and in a number of other countries and States. As at present, the increase in reactive power consumption exceeds the increase in the consumption of active power which is concerned not only with the use of a larger number of actuators and other sinks of reactive power for the automation of the production process, but with the rapid development of new frequency converters for electric drives, runs the statement of issues reduced energy efficiency of power supply systems and causes losses of electricity. The review of the strategy of development of power supply systems including agriculture and the search for solutions to improve the efficiency of electrical installations. The analysis of the existing solutions for reactive power compensation and determined the most appropriate for use in the power supply system of agricultural consumers. The article considers the use of capacitor banks as the main sources of reactive power serving to reduce power losses in agricultural consumers. The use of condenser units will allow consumers to obtain at the same full power of the transformer a large useful power at the same cable cross-section and transformer ratings. 

 

 

_________________________________________________________________________________________________________________________________